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INTRODUCTION 

During the last fifteen years various properties of gas­

eous media have been measured using microwave cavities as the 

sampling device. Although extensive work has been done in 

this field with respect to the design of refractometers and 

microwave spectrometers, very little effort has been directed 

toward the determination of the variation of sampling cavity 

characteristics caused by opening it to the sampled medium. 

In this paper, a special type of spaced-rlng cavity will be 

analyzed and the limits to which it may be opened to the sam­

pled medium examined In detail. 

This particular type of microwave cavity was considered 

because it offers the possibility of increasing the ratio of 

open to closed cavity surface and at the same time reducing 

the temperature dependence of its resonant frequency. The 

fact that more open surface may be possible without seriously 

degrading the desirable characteristics of a cavity is most 

attractive when one considers the turbulence problem present 

when measuring the properties of gaseous media under flow-

through conditions. For this type of measurement, minimum 

turbulence along with rapid response are usually desired so 

that cyclic changes may be accurately recorded. One of the 

most promising uses being considered for this type of cavity 

is the measurement of the partial pressure of the various po­

lar gases in expired air. 

A spaced-ring type of waveguide structure made up of 
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insulated concentric rings was first studied by Fox, Miller, 

and King of the Bell Telephone Laboratories while working on 

a problem in wideband communications via cylindrical wave­

guide at microwave frequencies. Since low attenuation was 

the paramount factor in their study, they chose a cylindrical 

waveguide operating in the mode because this mode has the 

property of decreasing attenuation with Increasing frequency 

above cutoff. The attenuation for this mode is given by 

a, 

where = surface resistance (ohms), 

T] = intrinsic impedance of medium inside the waveguide 

(ohms), 

f^ = cutoff frequency for TE^^ waveguide mode (cps), 

f = operating frequency (cps), 

and a = radius of waveguide (meters). 

It was shown in their studies that a 2db per mile loss at a 

frequency of 50 KMC for a 2 inch diameter brass pipe using the 

TEQ^ mode is possible. However, it was also found that mode 

switching was present if any Imperfections existed in the guide 

wall. Such mode switching causes both phase distortion and 

unwanted power losses of the desired mode. This problem is 

particularly acute In elements used to traverse corners. To 

reduce signal losses and interference effects due to mode con­

version and reconversion, dissipation was introduced to the 
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unused modes on a continuous basis. Several ways of doing 

this were found. One of these is a spaced-ring type of cir­

cular waveguide made of concentric isolated metal rings which 

provide a boundary which is preferential to the family of 

modes. All modes other than the circular type have wall 

currents in the longitudinal direction and experience consid­

erable loss in the spaced-ring structure as compared to the 

loss in a solid-walled guide. The power loss for the spaced-

ring structure under proper conditions was observed to be 

about 60 per cent more than the theoretical loss for an ideal 

copper tube, whereas the observed loss for the unused modes of 

propagation was on the order of 1000 to 5»000 times the TEg^ 

value. The higher-order circular waves (i.e. TE^g, TEg^ ....) 

exist with losses comparable to their values in a solid pipe, 

but fortunately the magnitudes of conversion between the TE^^ 

and other TE modes have been found to be quite small. on 

Because of these facts, it seemed reasonable to assume 

that a spaced-ring structure could be used to advantage as an 

open sampling cavity. If the insulated rings can be made pro­

gressively thinner without impairing the desirable character­

istics of the cavity, then it should be possible to achieve 

low turbulence to gas flow and better resonant frequency sta­

bility with this type of unit. A TE^^^ mode in this, type of 

structure is also optimum with regard to the detrimental ef­

fects caused by the adsorbed water vapor and absorbed gas at 

the guide wall. This is true because the Ê field for this 
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type of mode is zero at the guide wall and the cavity wall 

surface area is minimized in this application, respectively. 

In the sections to follow, the important uses and charac­

teristics of this type of cavity will be examined. In partic­

ular the applications of sampling cavities, measurement tech­

niques, and systems using sampling cavities will be presented 

in order to provide a basis for the interpretation of the 

results of the analysis to follow. In this analysis the field 

approach will be utilized to develop a so-called condition 

equation. The solution of this equation will then allow us to 

express in an approximate fashion the fields inside and outside 

the cavity in terms of space harmonics. . We can then, in a 

straight forward manner, derive equations for cavity quality 

factor (Q^) and resonant frequency (f^). Using these equations 

one can then determine the effects of various cavity parameters 

on the desirable characteristics of this particular type of 

sampling cavity. 
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SAMPLING CAVITY APPLICATIONS 

There are several fields of study where quantities of 

interest may be obtained by using a microwave sampling cavity 

as a measurement device. Among those of interest to the field 

of radio propagation in the microwave region are the refrac­

tive index and the absorption characteristics of the trans­

mission medium. 

Refractive Index 

The refractive index of a medium is related to the rela­

tive dielectric constant by the following equation 

where n = refractive index 

and = relative dielectric constant. 

Another quantity which is sometimes used instead.of the refrac­

tive index is called the refractlvity and is defined by the 

equation 

(3) N = (n-1) lof. 

This quantity is used because the value of n for nearly all gas 

eous media only differs from unity by a very small amount. 

The measurement of refractive index using a sampling 

cavity depends upon the fact that the resonant frequency of a 

cavity is related to the relative dielectric constant of the 

medium inside the cavity by the relationship 
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(4) a = ÇL 

-VT 
n 

where a = a constant 

and = resonant frequency (ops). 

If we take the derivative of Equation 4 with respect to n one 

can show that 

This last equation expresses the fact that the change in 

resonant frequency is directly proportional to the change In 

refractivity. If one measures Af with respect to the resonant 

frequency for the case where the cavity medium is a vacuum 

then N = AN and one can obtain N directly from the measurement 

of the shift In resonant frequency. 

One of the many possible applications of the refractivity 

measurement in a gaseous media Involves the determination of 

the partial pressure of water vapor contained therein. This 

can be accomplished by using the empirically determined equation 

(5) = -(alO"^)AN, 

2 ~ since n ^ 1 for most gaseous media. 

(6) N = 

where N = refractivity, 

T = absolute temperature (K°), 

P = total pressure (mlllbars), 

and Pjj 0 ~ partial pressure of water vapor (millibars). 
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Prom Equation 6 it is apparent that if the total pressure and 

temperature are held constant then 

(7) N = + AG 

where a^^id ag are constants. Thus a microwave hygrometer 

can be realized in this manner by measuring Af. If we wish to 

measure ^ in an absolute manner then Af must, of course, be 
2 

zero when P^ ̂  is zero. An instrument of this type has been 

developed by Magee and Grain (10) and reported in the Review 

of Scientific Instruments. 

Microwave Absorption 

It is well known that the molecules of most gases possess 

absorption spectra in the microwave region. The bandwidth and 

amplitude of these spectral lines are affected by several fac­

tors such as natural line breadth, doppler effect, pressure 

broadening, and wall collisions. By far the most important of 

these is the pressure broadening effect which can be quantita­

tively expressed by the equation 

r 1 1 

(S) 2rrT , 2TTT 

where y = absorption coefficient (neper/cm), ^ . 

3 N = number of molecules per cm/, 

m = fraction of molecules in excited state, 

c = velocity of light (cm/sec). 
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k = Boltzmann constant (joules/°K), 

T = absolute temperature (^K), 

= square of dipole moment matrix element summed 

over directions 

f = frequency (cps), 

f^ = resonant frequency (cps), 

and T = mean life time between collisions (sec). 

In the region near to f^ with Af « f^ Equation 8 can be 

approximated by 

(9) V = fi! f' 
Af 

(F-FY)^ + (AF)2 

This is the form of a typical resonance absorption of half 

bandwidth Af = 2^. It can be seen from this equation that 

the absorption peak () at the resonant frequency (f^) is 

proportional to N and inversely proportional to l/2NT. Now at 

low pressures both N and are proportional to pressure, 

therefore, Yj^^x independent of pressure over a wide range 

at Idw pressures. Temperature dependence of involves Af, 

kT, N, and m. For a diatomic or linear molecule Af is very 

nearly proportional to ̂  which means that 

and thus 

\ ^^max ~ -2AT 
ui; — T ' 

"max 
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Thus the percentage change in is seen to be equal in mag­

nitude to twice the percentage change in temperature. For a 

reasonable temperature change ^his variation in absorption 

coefficient can be quite small. High pressure conditions are 

assumed to become important when the number of collisions in­

volving more than two molecules becomes significant. In such 

cases the line width is no longer proportional to pressure 

since the effective number of collisions undergone by one mole­

cule is not simply proportional to the density of the molecules. 

High pressure may occur as low as 1/2 atmosphere for molecules 

with large collision diameters such as NH^. However, low 

pressure conditions may still exist at 1 atmosphere for other 

gases such as 0^ which have very small collision diameters. 

Lambert's law states that each layer of material of equal 

thickness absorbs an equal fraction of the radiation which tra­

verses it. From Lambert's law is derived the exponential 

decrease in intensity given by 

(12) I = I^e-YX 

where y is the propagation constant or absorption coefficient. 

In optical spectra departures from Lambert's law are usually 

associated with polychromatic radiation where individual com­

ponents are absorbed at different rates. In the microwave 

region, however, Lambert's law may even break down for mono­

chromatic radiation because of saturation effects. The inten­

sity of radiation can be made so large that absorbing molecules 
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of a gas cannot get rid of the absorbed energy rapidly enough 

and Y becomes dependent on the intensity of the radiation. A 

derivation of y for this case gives 

(13) Y = 
3C1CT '01 

2 ̂ 2 

1 
2TTT 

where h = Planck's Constant, 

n^ = number of molecules in lower energy state per cm , 

and ^ = probability per sec. of a molecular transition in 

state. 

Thus as a result of saturation at low pressures, y is decreas­

ed at all frequencies. The most notable effects occur, of 

course, near the peak absorptionat f=f^. The line shape is 

altered only in that the maximum intensity is decreased by 

the factor 

(14) 

1 + 01 ^ fit (2TTT) 

3ch 

and the half bandwidth increased by the factor 

(15) 1 + 
8TT^ IHQII^ fIt2TTT 

3ch 

At high pressures, saturation is generally unobservable. Satu­

ration is considered to become significant when 
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(16)  
2 

'"oi 
8TT M ^ fIt2nT 

3ch 
= 1 

Although broadening of the spectral line does occur because of 

molecular collisions with the cavity walls, this effect plus 

the doppler broadening effect are normally much less than the 

pressure broadening effect. Ordinarily a non-polar gas does 

not absorb microwaves, however it is possible that during 

collisions some dipole moment may exist. Such a pressure de­

pendent absorption has been found for COg. 

A somewhat specialized technique to which microwave spec­

troscopy seems well adapted is the continuous monitoring of 

various constitutents in a mixture of gases. One could, for 

instance, monitor the concentration or partial pressure of Og 

in expired air by passing the respiratory gas through the sam­

pling cavity of a microwave spectrometer. Changes in concen­

tration could be very easily and sensitively-detected, since 

the spectrometer itself would be under fixed adjustments and 

conditions. Furthermore, these changes could be quite rapidly 

recorded or controlled by the output of the spectrometer. In 

order to eliminate the effects on spectrometer output due to 

possible fluctuations in klystron output power, a bridge system 

could be used with one arm of the bridge containing the absorp­

tion cell through which gas is being flowed, and the other arm 

involving the reference cell, A cavity cell type of instrument 

is especially useful where the intensity of a particular 
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absorption line is to be measured over extended periods of 

time. 

For a gaseous mixture of n components, the fractional 

abundance of one of the components is given by 

^ Af. . 
(17) YNAX 2 

J=1 • 

where x^ = fractional abundance 

Ymax ~ maximum absorption due to the i^^ component 

Af^j = half width of the absorption line of molecule i 

in the presence of an almost pure sample of 

molecule j 

and P = total pressure 

Usually for a mixture of more than two gases, the various 

values of line width parameters ^^i.1 will not be known and thus 
P 

one usually assumes that proportional to the fractional 

abundance or one compares Y^ax the unknown sample with 

values for known mixtures which are similar to it in composi­

tion. 
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REVIEW OF LITERATURE 

The two most important topics in the literature that are 

of special interest in this study are measurement systems using 

sampling cavities and the cavities themselves. The most impor­

tant items previously reported in the literature in both of 

these areas are reviewed in the next two sections. 

Systems Using Sampling Cavities 

Microwave refractometers have played an important role in 

tropospherio radio propagation research and in the basic stud­

ies of the dielectric properties of gaseous media since their 

introduction. One of the first successful recording refracto­

meters was reported by Birnbaum (2) in the Review of Scientific 

Instruments in 1950. . This particular instrument utilizes two 

transmission type cavities in a bridge arrangement excited by 

a sweep-frequency Klystron. A block diagram of this unit is 

shown in Figure 1. 
Sampling cavity 

Phase 
meter 

Recorder Sweep 
Generator 

Klystron 
Oscillator 

Reference cavity 

Fig. 1. Diagram of a recording, microwave refractometer 
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In operation, the Klystron source is caused to sweep in fre­

quency through the resonant point of the cavity and the time 

difference between the peak point response for the two cavities 

is measured. This quantity has been shown to be a measure of 

the refractivity of the sampled medium. The accuracy of this 

device is dependent upon its ability to maintain a linear sweep 

and is further limited in accuracy and response time by the 

phase detector circuitry. Another type of refractometer of 

interest was reported by Vetter (24) in I962. This device 

virtually eliminates the dependence of the refractometer on 

electronic characteristics, of the source and detector circuitry 

and shifts the limitation to the cavities themselves, A block 

diagram of this system is shown in Figure 2. 

^ 

Sampling Cavity 

I 

Tuned Reference 
Cavity 

Diff 
Sum 

Servo 

Recorder 

Klystron 
Oscillator 

Phase 
Sensitive 
Amplifier 

Phase 
Sensitive 
Amplifier 

Modulation 
Generator 

Fig, 2. Block diagram of a Vetter type refractometer 
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The tunable, sealed reference cavity and the sampling 

cavity are excited by a single Klystron. The voltages from the 

cavity detectors are combined to provide outputs of the sum of 

these voltages and their difference. The sum is used to drive 

the phase-sensitive amplifier which causes the Klystron fre­

quency to track the resonant frequency of the cavities. The 

difference voltage is used to drive the second phase-sensitive 

amplifier which controls the servo that tunes the reference 

cavity to the resonant frequency of the sampling cavity. The 

major improvement over the type previously mentioned is the 

Incorporation of the Klystron in a feedback loop and the use 

of a servo-tuned reference cavity. The response of this device 

is quite slow, but its absolute accuracy is much better than 

the type shown in Figure 1. The typical type of sampling cav­

ity used in this instrument is similar to that shown in Figure 

4. 

Microwave cavity spectrometers have played an important 

role in the measurement of absorption spectra of various gas­

eous media. This has led to their use in quantitative gas 

analysis devices. Typical instruments of this type are shown 

in block diagram form in Figure 3» 

The operation of these instruments rest on the fact that 

microwave absorption can be detected by its effect on the 

change in quality factor (Q) of the cavity or by the change 

in the magnitude of the peak transmission. These changes are 

shown either by a decrease in the relative amplitude of a wave 
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Sampling 
Cavity-

Sweep 
Generator 

Klystron 
Oscillator 

Directional 
Coupler 

.Comparator 

J 

(a) 

Directional 
Coupler 

Sampling 
Cavity 

Reference 
Cavity 

Sweep 
Generator 

Klystron 
Oscillator Comparator 

Reference Cavi Ly 

Fig. 3» Block diagrams for microwave cavity spectrometers 

(a) Reflection type 

(b) Transmission type 

transmitted through the cavity or reflected from the cavity 

input into the waveguide or transmission line coupled to it. 

If the absorption line is sharper than the cavity response 

curve it may be.displayed by sweeping a microwave oscillator 

connected to the cavity through the frequency range of the cav­

ity response curve. The maximum or peak absorption is obtained 

from the difference in the absorption dip with and without the 
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absorber. This is best used with gases at low pressures where 

the spectral lines are well separated and narrow in frequency 

spread. Very wide lines, as in gases at high pressures, can 

be measured by noting the change in the Q of the cavity at 

resonance or by simply noting the change in the magnitude of 

the maximum response of the cavity transmission characteristic. 

If only one cavity is used then the absorber must either be 

removed physically or removed by a suitable electromagnetic 

means as in the Stark spectrograph. Most generally two cavi­

ties are used in a bridge type circuit so that removal of the 

absorber in the sampling cavity is not necessary. 

Since a sweep frequency mode is usually used in these in­

struments, it is usually desirable to make the Q as high as 

possible for sensitivity reasons, but the cavity bandwidth 

must be kept greater than the bandwidth of the absorption line 

so that the maximum absorption can be readily observed and 

measured. 

Microwave Sampling Cavities 

A typical sampling cavity of the type presently being 

used in various microwave Instruments is shown in Figure 4-. 

This unit is a transmission type with openings or sampling 

holes located in the end walls. The ratio of open to closed 

cavity area Is definitely limited In this type of unit because 

the holes are located in a position that will adversely affect 

the normal current flow in the end plates for the type 

of mode. Cavities of this general type are used in both the 

Vetter (24) and Blrnbaum (2) Instruments as well as the vari­

ous microwave spectrometers. 
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Mg. 4. A typical microwave sampling cavity 
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THEORETICAL ANALYSIS 

Analysis Techniques for Periodic Structures 

There are several different theoretical methods that have 

been used in the literature in the analysis of various periodic 

microwave structures which appear to have possible application 

in this study. One is the field approach where one applies 

Ploquet's theorem and Fourier series analysis to arrive at the 

electromagnetic fields of interest in terms of the so-called 

space harmonics. In this process a condition equation is de­

rived and must be solved in order to obtain for the wave- __ 

guide structure or the resonant frequency (f^) for a cavity 

structure. The space harmonics can then be computed and used 

in the determination of and other quantities of interest. 

This type of approach has been very successfully used in the 

analysis of the helical type structures by Sensiper (20) and 

others. However, in their studies they were interested in 

space harmonics which have phase velocities less than the 

speed of light so that electromagnetic fields of a particular 

space harmonic could be made to interact with an electron beam 

as in a traveling wave tube. In our study the predominant 

space harmonic will have a phase velocity greater than the 

speed of li^t. It turns out in this case that a somewhat 

different condition equation will be obtained than was obtained 

for a tape ring structure by Sensiper (20). 
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Another possible method for periodic structure analysis 

is the so-called filter circuit, or equivalent circuit ap­

proach. This analysis technique is hard to apply to the prob­

lem at hand because the periodic obstacles must be represent-

able by a simple shunt element not only individually, but also 

when placed in a waveguide in order to obtain a solution for 

the field components with any accuracy. In other words, these 

obstacles must be far enough apart so that there is no Inter­

action between them. The results of a filter circuit analysis 

usually give pass-band frequencies, and interaction Imped­

ances for the space harmonics. 

Several other methods of analysis were considered include 

ing the perturbât!onal, variational, and coupled mode types. 

It was found, however, that the field approach was superior 

for the purposes of this paper. Thus the field approach is 

applied in the next section in order to determine the electro­

magnetic fields in a spaced-ring, sampling cavity. 

Space Harmonics 

A drawing of the particular spaced-ring, cylindrical 

cavity to be analyzed is shown in Figure 5» Pictures of the 

experimental units are shown in Figures 17 , 18 and I9. This 

unit consists of five identical sections of length L with 

rings of thickness 6 and open space L-Ô. The spacers and hold­

ing screws are made of insulative materials which have dielec­

tric constants close to that of free space. Since the 
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A 
-1-
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T 
a 

Spacer 

Ring 

- >  

/ 

>-

Holding 
Screw 

— End Plate 

/- Iris 

Flg. 5» A spaced-ring, transmission type sampling cavity 

determination of the electromagnetic fields within any region 

is dependent upon one's ability to solve explicitly Maxwell's 

equation in a coordinate system appropriate to the region ̂ d 

to the boundary conditionsseveral assumptions are needed to 

facilitate the analysis using the space harmonic approach. 

The validity of these assumptions for this analysis will be 

considered later when the experimental results are discussed, 

(a) The fields inside and outside the cavity are 
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assumed to be the same as for an infinite structure 

of the same type where the field is zero at z = 0 

and z = d for all r. 

(b) All modes except the modes are attenuated to 

such an extent that their effect on and f^ may be 

neglected. 

(c) Effects of the source and coupling iris on fields in 

the cavity can be neglected. 

(d) Field components of interest are assumed to have no 

cp dependence. 

The first assumption neglects all end effects and assumes 

that the currents in the end walls of the cavity are the image 

currents for the fields of an infinite structure. The fact 

that the E field is not forced to zero at the ends outside the 

cavity is also neglected. 

Because of its general usefulness and application to this 

problem Floquet's Theorem will be'presented here where this 

presentation is after that in Watkins (25). It states that, 

"For a given mode of propagation at a given frequency the 

fields in a periodic structure at one cross-section differ 

from those one period away only by a complex constant." The 

Theorem is true whether the structure contains loss or not so 

long as it is periodic. The proof of the theorem lies in the 

fact that when the structure having infinite length is displac­

ed along its axis one period, it cannot be distinguished from 
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its original self. To prove this let us write the field 

solution as 

(18) ^(x,y,z ,t) = E'(%,y,z) 

where E'(x,y,z) e""^^ 

is periodic in z with period L. Let be the field at z 

and <^2 field at z = z^. Then we can write 

(19) = E'(x,y,z^) 

and 

(20) ^2 = E'(x,y,Z2) e~^^2 gJwt 

where Z2 = z^ + L and E'(x,y,Z2) = E'(x,y,z^ + 

Thus 

(21) ^ = E' (x,y,z^) 

and 

(22) • 4 = E'tz.y.zi + L) s-Y(=l + 

so 

( 2 3 )  &  =  _  
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In order to use this theorem we expand the field E'(x,y,z)e"^^ 

into its Fourier series. Thus we let 

2 Tin 

(24) E'(x,y,z) E^(x,y) e"^ ^ ^ 

all n 

and then to find E^(x,y) we multiply both sides by 

J(^)ZH-YZ 
e and integrate both sides from z = z^ to 

z = z^ + L. The result is given by 

-V. (Y+j2p)z 
(25) Eo(%,y) . 1 ) s a:-

This expression can be used to compute the various space 

harmonics E^(x,y). The nth term of the series in Equation 24 

is called the nth space-harmonic. If the propagation con­

stant Y = then the phase constant for the nth harmonic is 

given by 

(26.) Pn = Po + 

and thus the phase velocity for the nth harmonic becomes 

(2?) v̂  = m/ 

In some cases an diagram is of interest. There are a 

number of ways to determine the diagram for a specific 
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structure. The most common method is to measure the resonant 

frequencies of a cavity made up of several sections of the 

waveguide. A typical w-P plot for a five element cavity is 

given below in Figure 6. 

^2 

.ÔTT 0 .8n .2n TT 
PL 

Fig. 6. w-p diagram for a five element periodic structure 

There will be five different resonant frequencies as shown for 

the zero order space harmonic. They will obviously occur when 

^L= TT/5, 2N/5, 3TR/5> 4N/5, and n. Such a diagram can be drawn 

for the nth harmonic noting that and that u> is 

an even function of p. 

In the analysis of the structure being considered we 

seek the proper expressions for the resonant frequency f^ and 
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unloaded quality factor for the cavity shown in Figure 5 in terms 

of the ratio 6/L and other important parameters. In order to 

accomplish this the method of space-harmonics will be used. 

Neglecting the effects of the source, the homogenous partial 

differential equation which must be solved is given by 

(28) V%g + = 0 

2 2 Where k = w we. This equation is derived from Maxwell's 

equation with time dependence assumed. Let the solution 

to Equation 28 in terms of cylindrical coordinates be given by 

(29) Hg = H^(r,cp,z) 

where y is the propagation constant in the +z direction and 

is periodic of period L. Now expand this solution in terms of 

a Fourier Series in order to meet the periodic boundary con­

ditions in z at r = a. Thus 

(30) Eg = H^(r,cp,z) e'Y* = Z e~^~Tr^ 

where 

Zi+L ~ 2nn 
(31) Hnz = E / [%;(?,*,= L ̂  dz. 

If we let Y = jpQ and put the assumed solution back into 

Equation 28 we find that each of the n space harmonics must 

satisfy the equation 
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<32> VF Hn: - T? «a: = * 

Where = 9% - k^-

The general boundary conditions that must be met in this prob­

lem require that the fields be finite at z = o and approach 

zero as r—t-*. 

Considering these two general boundary conditions the 

restricted general solutions for inside and outside the z z 

guide can be written as 

(33) Z I^(T„r) 

and 

(34) H° = 2 K^(T„r) 

where and K^(T^r) are zero order modified Bessel func­

tions of the first and second kind, respectively. Now using 

the fact that 

jwn 
(35) E^=-

"^n 

^fz we can show that 

(36) = -Jiuia Z In(T r)e"j L 
^ n ^n 

and 
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(37) ^ = 2 ̂  K,(t„r) 
Zirn, 

n n 

also H is non-zero in this case and is given "by the equation 

- j^o 
(38) H = -^ 

.> _ 

which yields 

(39) 4 = 2 ̂  Il(T^r) 
° n ^n ^ ^ 

and 

(40) HJ = 3B G-j^oZ E— K,(T r) 
O n Tn ^ * 

All other field components are zero. 

The procedure now is to assume the form of the current 

density on the rings at r = a and expand this into a Fourier 

series of space-harmonics. Then the boundary conditions are 

applied. The boundary conditions which apply to the problem 

at hand are as follows; 

(a) The tangential E field must be continuous at r = a 

for all cp and z. 

(b) The discontinuity in the tangential H field at r = a 

is equal to the total surface current density. 

Prom (a) we can write that 
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(4l) (r=a) = (r=a) 

and from (b) we get that 

(42) J (r=a) = n x (H° - H^) « % ='t (H^ - H°) 
^ ^ r=a ^ ^ r=a 

or 

(43) " Heir.*, 

Note here that we are letting the superscript (i) refer to 

field components inside the guide structure and (o) superscript 

refer to field components outside the guide. 

From the above equations it becomes obvious that it is 

also possible to assume a periodic surface current density J^p 

at r=a and then to express it in a Fourier series of space-

harmonics. The equations of interest are then given by 

v„ ,2nn 
(44) j^(r=a) = J^(r=a) e" =2 •^ncp^®''^^ ^ 

n 

and 

2-pfn 
(45) Jaj(a.tl') = e/ JA (a,9.z) e''"' Az 

where is the complex Fourier amplitude of the current den­

sity associated with the nth harmonic. In order to use this 

approach to solve the problem at hand assume a current density 
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function at r=a. Although it would appear that an incorrect 

assumption here would be fatal, it turns out that the function­

al form shown in Figure 7 is sufficiently accurate for most 

cases. In this paper we will assume the surface current 

density to have the z - dependence shown in Figure ?• 

J^(a,cp,z) 

Periodic 

in z 

L 

z 

L+6 

Fig. 7» Assumed current distribution on rings at r=a 

Using this function in the integral of Equation 4^ we get 

,9n* 
sin 

Pnfn 
T-

fnf. 
L ' 

In order to effect a solution one further condition equation 

relating the magnitudes of the space harmonics A^ and A^ is 

needed. This condition can be stated in three different ways 

One is called the thin ring case where 6 « L and 

(47) E°(r=a) = E^(r=a) for z = mL + 6/2. 
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This says that the electric field is constrained to be zero 

only at the center of the rings. This is accurate only for 

very thin rings. The next is referred to as the wide ring or 

narrow gap case where L-6 « L. In this case we set 

(48) H°(r=a) = H2(r=a) at z = (mL - ̂ ^). 

A more accurate condition equation than either of the above is 

given by 

(49) 2na / (E •(r=a)) • fj*(r=a)| dz = 0. 
I cp ' ' V ' 

A more stringent requirement expressed as 

(50) (E^(r=a)) . (J*(r=a)) = 0 for all z may also be used. 

Condition Equation 49 will be used here. It can be seen to be 

correct since the electric field is zero on the ring surface 

and the current density is zero in the gap. Although it would 

be desirable to use the boundary condition in Equation 50, it 

turns out that Equation 49 is much easier to apply. The jus­

tification for using Equation 49 rests on the fact that it 

minimizes the error in matching the electric field for the 

assumed current distribution by making the average error equal 

to zero. 

There are two cases to be considered. First, let us take 
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the case where the wall thickness (b-a) is approximately zero. 

A finite wall thickness will be considered later. The bound­

ary conditions are then expressible in terms of the equations 

(51) = E°, 

(52) 

and 

(53) ^ AZ = 0 

Using Equations 51 and 52 the condition equations obtained are 

(34) lofTn*) - ̂  " T" 
sin 

and 

(55) I^(T^'a)' + %(i„a) = 0 

Prom these two equations we can write that 

( 5 6 )  =  

sin 
^n^ n 

en8 

^o^^n^^ K^(Tjja) + ( T n^ ) 

and 
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TT 

sin 
9n* n 

Pn* 

(57) A° = 
n lo(Tna) K]_(T^a) + K^Cr^a) 

Using the condition given in Equation 53 we can write that the 

(58) f -Juuja 2 ̂  I,(T„a) C-3V 
n 'n 

I 
m 

J6 
L 

sin 
^ sjPm: dz = 0, 

For m. n Equation 58 is equal to zero and thus Equation 58 

can be written as the 

(59) / -jw# 
n n 

r sin 
dz = 0, 

Upon integration of Equation 59 one obtains Equation 60. 

( 6 0 )  
sin 

n ;; ^ 
= 0 

Now substituting for from Equation 5^ we get that the 
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0. 

Now since + K^(T^a) J^(T^a) = we can write 

Equation 6l in the form 

rsin --n i 
(62) Z iL(T a) I (t a) ^ = 0. 

• n i n 1 n L J 

rsin ^n^ •? 
L 

L 

If one examines this last equation one can show that for r^a 

real all terms are positive real and thus one cannot hope for 

this summation to be equal to zero. Since our/structure is not 

an infinite one, we can disregard the requirement of no radia­

tion per unit length from the structure which would require an 

infinite source and look to one or more of the space harmonics 

to have phase velocities greater than the velocity of light. 

Let us consider the n=o space harmonic to have this possibility. 

Then we can write Equation 62 in the form 

(63) -I^(T^a) = 

L 

where 
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and = @0 + 

For the n=o harmonic we assume that < k and thus 

(64) = •"'o = V k' - @0 -

Now using the identities 

(65) I^(u) = J J^(-Ju) 

and 

(66) K^(u) = -tt/2 H^Z) (_ju) 

we get 

(67) ii/2 (Nj^(k^a) J^Ck^a) + j (k^a)) 

sin 

Now since the boundary condition on the unperturbed waveguide 

for the TEg^ modes requires that (k^a) = 0, we look for an 

approximate solution to Equation 6? under the assumption that 

Jl(koa) « N^(k^a) and that all T^a for n^o,are positive real. 

These assumptions reduce.the condition equation to that given 

in Equation 68, 

9.6-2 
_ sin 

(68) I Nj^(k„a) J]^(k^a) S V' ''l'V' 

n 
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The convergence of the summation in Equation 6? is discussed 

in Appendix C. For the large argument form which is suffi­

ciently valid where T^a for n^o is greater than 10 we get 

(69) 5 a) = Z (gfL- ) 
n^o n 

rsin 

P.6 n 
L 

where for n^o 

(70) T^a ="\/ 8^ - k^a^ 

and for n=o 

(71) T^a - jk^a - p^a^ 

It is now assumed that the foregoing derivation for an infinite 

waveguide structure is also valid for a cavity made of the same 

elements. For the cavity case we require = pn/d where 

p = l ,  2 ,  3 »  b e c a u s e  o f  t h e  e n d  p l a t e s .  T h e  c a v i t y  m o d e s  

of Interest are the TEg^^ types where k^a = 3•835 for the 

unperturbed cavity for all p. In order to solve for the actual 

k^a for a periodic structure we use an iterative procedure. 

First let k^a = 3.835 which is the value for an unperturbed 

structure. Then calculate T^a using the equation 

(72) Tna = ^TTV(I)̂  (2E + n2' m O 

1 
2 
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where p = number of half wavelengths in cavity length d, 

n = index of summation, 

d = length of cavity, 

and m = number of identical units of length L in length d. 

Next solve for a new k^a using Equation 69. Repeat this pro­

cedure until the change in k^a over one iteration is suffi­

ciently small. Now take the last value of k^a from this itera­

tive computation and use it to solve for the resonant frequency 

which is given by the expression 

v' + (T)' 

Resonant Frequency Determination 

The ratio of the resonant frequency for the spaced-ring 

cavity to the resonant frequency of a closed cavity is given 

Olp (open) 

Qlp.(closed) 

In order to determine the validity of this development resonant 

frequency measurements were made on a constant length cavity 

for various values of ô/L. The cavities used in these experi­

ments are shown in Figure 18, I9, and 20. The non-varying 

dimensions of interest are length d = 3«17 x 10" meters, 

radius a = 2.27 x 10~ meters and wall thickness (b-a) = 

— P 
.9 X 10" meters. For definition of dimensions see Figure 5« 
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Fig. 8. Cavity resonant frequency versus ô/L 
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-
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3 
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Fig. 9. Cavity resonant frequency f^^g versus 6/L 
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Quality Factor Determination 

Next we look to the computation of the of the spaced-

ring cavity. This can be accomplished by evaluation of the 

expression for unloaded quality factor given by the equation 

(75) Q_, = w^max 
FT 

where = maximum energy stored per cycle (joules) 

uu = angular frequency (rad/sec) 

and P,p = total average power loss (watts), 

In order to compute we will break the problem into two 

distinct regions. One inside the cavity and the other outside 

the cavity. The expressions for these energy terms are given 

below. 

(76) "max = ? (l = ^ av 

In order to evaluate these two integrals we will use the fields 

given by 

^ 2A° 
(78) E° = JiDii I K^(Tnr) sin p^z 

and 

, • 2A^ 
(79) = -Juju Z ̂  sin e„z. . 
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Ignoring end effects the maximum energy stored outside the 

cavity is given by 

(80 ) Cx = I / |E°| ̂  Znrdrdz 
o a ^ ' 

and inside the cavity by 

d a 

/• / o o 
(81) flax = Z / Znrdrdz 

All terms in the last two equations which result from ths 

double summation resulting from ^ or E° ̂  and where n^m cp cp 

result in zero when integrated from zero to d on z. Thus we 

can write the integrals of Equation 8l in the following form 

. 9 2 _ d a ]A^|2 
(82) lu E/ / —— 11(7%^) sin (p^z) rdrdz 

n o o Tn 

where for the n=o term we get 

d K i 2 

(83) (n=o) = f f J^fk^r) sin^ (p^z) rdrdz 
00 k o 

since = jk^. 

For U° ̂  we do not consider the n=o term since it represents max 

radiated power and therefore is a loss term component. The 

energy stored (max) outside the guide is given by 

d OS |â  j 2 
(84) U° = 4neti^iu^ X f f —2^ ̂1^ sin^ (p z ) rdrdz 

nf^o o a 
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The tpjsal energy stored is then given by 

(85) 

Now using Equations 56 and 57 Equation 85 reduces to 

(86) U. .2 2 
max 2 / / I sin^ (p^z) rdrdz 

ny^o o o T n 

d IA^ 1 ^ 
+ /y — jjck^r) sin^ (PqZ) rdrdz 
o o k. 

d 00 |A°P 
+ // -g— KJ(T a) sin^ (P z) rdrdz 
n^o o a 

Evaluating each integral we get the following equation 

IT,ii 2 

(87) = TTen^uj^da^ 1^0 Jl'V' - Jo(koa) J2(koa) 

- 2 
141 

il 2 

n^o T n 

li^CT^a) - (1 + -i-j) if(T^a) 

(T„a) 

K'<v) - ^ 

Now since 

'®8) Ki'-Kr 
K^(T„a) 

from the boundary conditions,we can reduce the two summations 

above to a single summation, so that 



www.manaraa.com

43 

(89) , = neu^tu^da^ ^ - Jo'k.a) J2(k,a) 

+ I 
npto T 

2 
141 / if <T„a) K^^(T^a) - K2(T„a) H^tT^a) 

n K2(T„a) 

Now since 

(90) I^(z) K{(z) - 1^(2) K^(z) = -

(91) Ii(T^a) K^^(T^a) - K^(T^a) I{^(T^a) 

Il(T^a) K'(T^a) + Ki(T^a) I{(T^a) 

and 

(92) 
Kn(Tna) 

Ki(v) = - ̂ 2(v). 
n 

the term 

(93) if(Tna) K^^(T^a) - K^(T^a) I{^(T^a) = 

Kn ( Tj^a ) 
Il(Tn^) ' v;- - K2(T„a)) + K^(T^a) T„A I L>'N 

Thus we can write the maximum energy function as 

(94) U^NAY = nen^uj^da^ (JF(V' - JO(V J2(M" • 



www.manaraa.com

44 

4r 

'n 

(r^a)^ [Tj^a(Ii(Tj^a) KgCT^a) - l ^ i T ^ a . )  KifT^a))- 2I]_(Tna)K]_(Tna)) 

K2(T„a) 

Using the large argument form for I^(T^a) K^(T]^a) given by 

<95) I„(T„a) K^(T^a) 1 
2T A 
n 

T  a  — 0 0  
n 

for n^^o Equation 9^ can be written as 

(96) = rteu^oi^da'* '>oi' 2 
rr-? (Jï(V - Jo'V Ja'V) 

L (ak^) 

n I 

n7o (T^a)^ KifT^a)j 

For n^o we can use the equation 

(97) |A^| = 1|^ - K^(T^a) 
Sin 

Pv,6 n -, 

fnf 
L 

and for n=o 

(98) A o J^(k^a) + N^(kga) 



www.manaraa.com

45 

Putting Equations 97 and 98 into Equation 96 we get 

(99) u, max 
~ Treu^uj^da^J^Ô^ 

(JjCk^a) - Jodc^a) J2(k^a)) 

3 

• (J^(k^a) + NfCk^a) - I (-i.) 
njÉo n T^a 

Ffliilzf' 

- -TT J -

It turns out for the cases considered that the summation in 

Equation 99 is negligible compared to the first term so that 

r2,  (100) U. max Tr^eu^iii^da'*J^6^ 
4l2 

(jf(k^a) - Jg(k^a) J2(k^a)) 

• (4( V + "I'V)) 

This last equation will be utilized in the determination of 

for the cavity. Note here that the term neglected above 

represents the energy stored outside the cavity, and may have 

to be included if it is not sufficiently small. 

The power loss due to radiation is only present in the n=o 

term outside the guide. The power density in the +r direction 

is given by 

(101) Pp = Re E°„ H*° 
ocp oz 

and thus the total average power radiated is given by 

(102) P 
^rad ' / 

2nrdz 
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or 

(103) Py 
^rad 

rdz. 

Since 

2A. 
(104) = jujM Ki(Tor) sin p^z 

and 

(105) H' oz Ko(V) sin 

where = jk^, we can write 

2A 
(106) E° = (-TT/2 H^^^k^r)) sin p^z 

ocp 

and 

(107) = 2A° (_J TT/2 Hp K̂̂ R)) sin P̂ Z. o ' o 

Now using Equation .103 we get 

(108) P. = Re 
rad r-*oo 

-j" / 4:2>(k„r) H^2'(lc*r) 

sin^(p z)rdz. 

Now as r .approaches » 

(109) H^2)(kor) e-j%or 
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and 

(110) -.12 e^V, 

then 

(111) P 4TT^(Duda^J^6^ 

^rad I 4l? 

The average power loss in the walls of the guide can be 

computed using the equation 

1 m-1 ql+6 . Y,2 
(112) P. =4 2/ Bg HM (r=a) 2na dz, 

^wall q=ô ql ^ | zt 

Using the fact that 

(113) [Hgl^ = 4|A^| slrf 

and neglecting the other space harmonics the integral Equation 

112 can be written in the form 

(114) P 
-"wall 4l' 

I (Ji(kQa) + NjCk^a)). 

. (Jofko*) + (Jotko*) + N^(kQa); (jf(koa))J F(m,;^) 

where 

(115) P(M,G) 
m-1 

mô -
q=o 

d 
2pn sin-

2np(q-^) 2npq 

m - sin- m 
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It turns out that for a symmetrical unit the summation in 

Equation 115 is always zero so 

(116) F(m,^) = mô 

and thus 

(117) Pr = h 
^wall 

+ (Jo(k^a) + N^(kQa))(J^(k^a))J m6 

In the computation of the end losses as with the wall 

losses we will consider only the n=o space harmonic component. 

On this basis then 

2 ^ 2 
(118) (z=o) = ̂  [a^I J^fk^r) 

and 

(119) 

This can be written as 

(120) rJ^(k r) dr 
^ends k% 4 -L ° 

o 

where 

(j2(k^a) + Nf(V)) 

a 2 
P = 2/ i KÏ^t] (z=o) 2nrdr. 
^ends o ^ si n 

(121) 
J^ô^a^k^TT^ 
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and thus 

(122) P, 
•'ends 

8n^RS3OJ^6V 

kl? 

(jZfkga) + N^(k^a)) 

%- (J^Ck^a) - Jodc^a) JgdCga)) 

'} 

The equation for end losses in the cavity is thus given by 

(123) PT 
•"ends 

_Ë_? 
4L' 

(J^fk^a) - Jo(k^a) JaCk^a)) 

(J^(k^a) + N^(k^a)) 

The total unloaded quality factor (Q^) expression can now be 

written as 

(124) Qq = n^e^^w^da^ (j^Ck^a) - JQ(kQa) J^{}s.^a)^ • 

[j2(koa) + N^dt^a)) 

Zn^a^RgkZ ((j2(k^a))(j2(k^a) + N|(k^a))+ 

(ji(V"(Jo'V'"o'V'l 

+ Itn^ujuaa^J^(k^a) 

+ (J^dt^a) - Jg(kga) Jgdc^a)) • 

(j2(k^a) + N^(k^a)) 
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To check this equation we let 6-» L which means that J^Ck^a)-

0 and mô—••d. Equation 124 reduces to 

which can be written in the form 

2 3 3 
(126) w a 

[^y + (f )(̂ ) ] 

Now since the resonant angular velocity for a mode is 

given by 

(127) ^ /(V)2 + (ETO,2 
a^iae — 

and since x] =(^)^we get 

(128) = 
[(V' + 

3/2 

2*8 

This last equation is the same as for an unperturbed cavity 

which means that our derived approximate expression for Q is 

correct for the limiting case where spaced ring structure 

approaches a closed cavity condition. 

The calculated points for the theoretical curves obtained 

using Equation 124 are plotted in Figures 10 and 11 for p=l 

and p=2, respectively. The measured data are shown in Figures 



www.manaraa.com

51 

12 and 13 along with theoretical curves assuming the radiation 

loss to be negligible. It can be seen here that good correla­

tion results between the theoretical and measured data points 

for the p=l case and also for the p=2 case when radiation loss 

Is neglected. Also Included Is a measured data point for a 

cavity where the end plates are extended beyond the outside 

edge of the cavity. The difference between these two condi­

tions does not appear to be very great and thus the neglecting 

of end effects is partially validated. The theoretical justi­

fication for neglecting the radiated power loss in the case of 

the measured data rests on the fact that the experimental 

cavity has non-zero wall thickness whereas the derivation was 

on the basis that (b-a)=0. In the non-zero wall thickness case^ 

one can approximate the fields outside the guide by consider­

ing the slots between washers to constitute a radial trans­

mission line of length b-a and thickness L-6. The only modes 

considered are the TÈ^^ type for a radial line and thus the 

propagation constant for all of these is imaginary as long as 

L-6 < X./2' Therefore we have m radial lines excited by the 

fields inside the guide and operating below cutoff. The mode 

undergoing the least attenuation in the +r direction is the 

TEQ^ where the eigenvalue for this case is given by 

(129) 4 = 

Now since the electric fields inside the radial guides must 
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match the fields at r=a and r=b inside and outside guide, 

respectively, magnitudes at r=a and r=b must be related to 

each other by the attenuation of the radial guide. Thus 

(130) 4^ = 
E^(r=a) K^(k^a) 

and if one uses the value of b-a = .9 x 10~ meters and lets 

L-6-~*"L then the ratio of field magnitudes inside and outside 

at f = 10 KMC is given by which means that the radiated 

power is down by at least 50 times. This suggests that the 

radiation may be neglected in cases where L-Ô « X./2 and b-a 

is sufficiently large. The measurement methods are discussed 

in the next section and the test data are given in Appendix A. 

Appendix B gives some fundamental relationships for the unper­

turbed cavities and the computed values of and f^ for the 

various cavities. Because the cavity rings would have to be 

made extremely thin in the r direction before the experimental 

data would start to approach the theoretical curves given in 

Figures 10 and 11, no attempt was made to take experimental 

data to support these curves. 
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MEASUREMENT TECHNIQUES 

Basically there are two general circuit configurations 

used in a cavity type, microwave refractometer or spectro­

meter. These two different methods are shown in block diagram 

form in Figure 14. Although the external microwave circuits 

differ considerably in the two cases, there is little essential 

difference in the operation of the cavity. 

Reflection Method 

First let us consider the reflection type of circuit • 

shown in Figure l4a coupled to the waveguide by a single hole 

or iris 
Detector 

Cavity Signal 
Generator 

Directional 
Coupler 

(a) 

Pi ^3 
Signal 
Generator 

>• 
Cavity 

>. 
Detector Signal 

Generator -1=— 
fl 

Cavity Detector 

( b )  

Fig. l4. Resonant cavity measurement circuits 

(a) Reflection method 

(b) Transmission method 
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An appropriate equivalent circuit for the cavity and its cou­

pling iris for the reflection method with reference to the bb* 

plane is shown in Figure 15. 

o 

A/-

"1 

R„ + J (luL -

Fig.. 15. Equivalent circuit of reflection cavity at plane bb* 

In this case the losses in the coupling iris are neglected and 

M is the mutual inductance between the line and cavity and the 

cavity is represented by a series R^,L,C circuit. At plane 

bb* the impedance looking into the cavity is given by 

2 
(131) Z^b' = jwth + 

(WM)' 

2 
thus if we define we can write 

s o 

(132) Z-u-u, I Xn 

o o T I , wL 
^ E s 

1-

w 2 

2 1 where u,^ = LQ. For high cases w = 
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so that Equation 132 can be written in the form 

Zbb' .%1 . 9 
(133) -F- = + 1 

Zo 'Zo 1 + J 2Qo* 

W-W_ T 
where 6 = and = ^5—. 

"r ° 

The cavity quality factor from Figure 15 can be written as 

u,L - PR_ X,/Z 
(134) «1 R (Ifg) 

S 

where g = p. ( 5-) . 
1 1 + (x^/z^)2 

Now since in most cases (X^/Z^)«l then p = we can write 

Thus we can write that 

Now referring to a position aa' nearer the source where 

Y 
the reactance _l is removed then the impedance at the new 

Zo 
location is given by 

(13?) ^aa' 1 + j 2Q_(ô-6_J 
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where 6^ = 
2Q^ 

W-Wf 
and 6 = 

««r 

But since in general •— «1 and Q>> 

then we can write 

^aa* ^1 (138) 
Zo " 1 + j 2So&' 

Using Equation 138, one can show that the reflection coefficient 

near resonance is given by 

aa' _ ^ 

° V- +1 ° 91 + 1 + j 

Zo 

Now if we define ~ and where d^ and d„ are called "1 0=^ 

loss factors, then = d^/d^ and Equation 139 can be written 

in the form 

2(d/d ) 
(140) = 

o ^1 2 

or 
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2d 
(141) i \ 3 26 

Assuming now that a lossy material is introduced into the 
-II 

cavity then the new value for d^ is given by d^ + where the 

new permittivity is given by e'rje". Thus the reflection 

coefficient equation can now be written as 

2d, 2d, 
(142) r' = - ^ 

° d^ + d^ + 1^ + J 2Qq6' + J 2QQ6' 

where 6' = ^"^r, e' = 1, 
(«• 

and = (|1) 

At resonance with and without a lossy medium, the reflection 

factors are real and are given by 

and 

2d, 
(144) TQ = 3—qrâ—+~P^ ' respectively. 

°res *o ^r 

For «d^ + d^ we can now compute the change in reflected 

voltage from Equation 1^5* 
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(1̂ 5) AV 2d e" 

res («1 + ̂ o'' 

The maximum change in reflected voltage AV" for a variable d^ 
max 1 

is given when d^ = d^ so that 

(146) 
AV' max 

V 
= :r 

or 

(147) = (2QjV^i) ej. 

The minimum detectable absorption is given by setting 

AV max 

(148) 

equal to the thermal noise (voltage) given by 

1 

Vjj(rms) = (toNAfZ^)^. 

Transmission Method 

In the transmission method we are interested in the ratio 
AV, 

"v! when a lossy medium of dielectric constant e'-je" is 
res 

introduced into the sampling cavity. In this case we will 

develop an expression for the ratio of the power transmitted 

through the cavity at frequencies near the resonant frequency 

to the transmitted power at resonance. From this expression 

we can develop an equation for For this case we 
res 

consider the coupling holes to be representable by ideal trans­

formers and thus neglect both the losses and the reactance of 
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E ru 

o 

AA 

R. 

1 : M, ^2 : 1 

Fig. l6. Equivalent circuit of a transmission cavity 

the coupling network. An equivalent circuit for this case is 

shown in Figure l6. The power transmitted to the load in 

Figure 16 is given by 

(149) Po = è 
? I I 2 

nf E r Z 1 ' ' o 

H^d+Pl+Sj) + J(»L- i) 

and the power transmitted at resonance is then given by 

(150) 3 res 2 
4 |E|^ Zp 

Where g = 
4 Zp 
R_ • and ®2 = 

4 Zp 

The ratio of the power transmitted at frequencies near reson­

ance to the transmitted power at resonance can now be expressed 

by 
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(151) h 
p 
3 res 

2 ? ' 
l+4Q^a 

Since for this case 

where ^ and dj = d^+dg+d. 

the corresponding voltage ratio is given by 

(153) 
V: 

V 3 res d|+46^ 

1 

Now if we introduce a lossy medium Equation 153 can be written 

in the form 

(154) h 
3 res 

AL+GR 

•2x i (d^+4ô ^) 2 

and since 6' = 6 in most cases, Equation 154 can be expressed 

as 

(155) 5 
3 res (d^+46^) 

at frequencies close to resonance. 

At resonance where 6 = 0 we can now write 
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(156) 
^3 res 

AJ 

+ dl + dg 

or 

(157) AV, 
/V 

The maximum change in the transmitted voltage.at resonance 

for variables d^ and dg is when d^ = d^ + dg. This gives the 

maximum change in AV^ as 

(158) AV3 
Vr 

max = = "If 

The minimum detectable change in the presence of thermal noise 

can be computed in the same manner as before. 
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EXPERIMENTAL METHODS 

The two quantities of interest in this paper are the reso­

nant frequency and unloaded quality factor of the cavity being 

considered. In what follows we will discuss first the measure­

ment of frequency and then the measurement of quality factor 

for the cavity structures shown in Figures 17, 18, and 19. A 

typical experimental laboratory set up is shown in Figure 20. 

Measurement of Resonant Frequency 

There are several methods that can be used in the deter­

mination of frequencies in the microwave region. Two of the 

most important methods are considered here. One of these 

methods is to measure essentially the wavelength using an 

absorption type cavity wavemeter which is calibrated in terms 

of frequency and uses a micrometer dial to measure end plate 

motion. The most common type of cavity used in a cavity wave-

meter is a cylindrical type operating in the TEg^^ mode with 

an adjustable end plate. The accuracy of this type of measure­

ment is dependent upon temperature, humidity and scale calibra­

tion. In most cases the accuracy is within + .1^. 

The other method used in this research project is shown 

In Figure 21. It consists basically of a harmonic generator 

or transfer oscillator and a standard oscillator plus electron­

ic counter. The transfer oscillator frequency is adjusted 

until a zero beat of nf^ and f^ is obtained (i.e. f2=0). Then 
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the standard oscillator frequency is adjusted until it is 

within 10 MC of f^. The unknown frequency f^ can then be 

calculated using the equation 

(159) = 

If f^ is greater than f^, the minus sign is used, but if f^ is 

greater than f^ the plus sign is used. In order to determine 

the number of the harmonic n one can adjust the transfer oscil­

lator to the next lower zero beat frequency so that (n+ljf^ = 
f 

f-]_. Now n can be computed using the expression 

fn/fn 
(160) n = —-—^ 

1 - f^/f^ 

Another way to determine the harmonic number n is to measure 

f^ with a cavity wavemeter and then determine n from 

(161) n = 

The accuracy of this method for measuring frequency in the 

microwave region is about an order of magnitude better than 

the measurement using a cavity wavemeter. 

Measurement of Quality Factor 

The various methods that may be used to determine the 

unloaded quality factor of a cavity are listed below; 

(a) Transmission method 

(b) Transient or decrement method 
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(c) Impedance method 

(d) Dynamic methods 

If we consider a transmission cavity arrangement as shown in 

Figure lb the value of Q measured using methods a, b, and d is 

the loaded Q namely of Equation 152. For method (a) the 

value of is determined by measuring the resonant frequency 

and the frequencies at the half power transmission points and 

then using 

(162) = fp/Af. 

In the decrement method a pulse of RF at the resonant frequency 

is applied to the cavity and the decay time of the oscillation 

after the pulse is removed is measured. The value of can 

then be computed by solving the equation 

( 163 ) — Trf pAt 

where At = time for oscillation to decay to l/e of its original 

value. This method is usually used for cavities with Q^'s 
L 

higher than 10 since At is hard to measure accurately below 

this value of Q. For this reason this method was not employed 

in the cavity measurements presented in Appendix A. Method (d) 

uses a swept frequency Klystron source which is caused to sweep 

in frequency through the resonance curve of the cavity. At the 

same time this sweep frequency is mixed down to a much lower 

frequency range by mixing it with a fixed frequency Klystron 
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source. An adjustable Q circuit at the lower frequency range 

is adjusted until the response curve for the two swept cavi­

ties match. If the transmission detectors are matched then Q£ 

can be computed using the equation 

(164) = Q^(f^/f^) 

where the primed quantities refer to the low frequency circuit 

quantities. Since the low frequency loaded quality factor 

can be determined much more accurately than the quality factor 

at the high frequency, it is possible to find very 

accurately using Equation l64. In order to compute from 

any of the values determined by the methods just mentioned 

one must be able to measure and . There are two ways that 

can be used to determine and Pg with sufficient accuracy. 

One method is to measure P^, P£, and P^ at resonance using the 

circuit shown in Figure l4b and then compute and pg using 

the following equations 

(165) Fz/Pl = , ,2 = 1 ^ 
(1 + Yi) P 1 

(l66) Pt/Po = ^ 
y 2 1 + p2 

and 

(167) p^^ = (1 + P2) Y]_' 

Another way is to measure the SWR at resonance and note that 



www.manaraa.com

70 

SWR(^es) = Yi if Yi > 1, otherwise SWR = Now if pg « 1 

as it is in this case then we can determine approximately 

by equating it to This method does not of course yield 

^2 and for this reason the SWR method is used normally with a 

reflection type cavity. For the measurements at p = 2 (lower 

Q^) the frequency stability of the source was sufficient so 

that good agreement in the determination of was obtained by 

either method. However, at p = 1 (higher Q^) this was not so 

and the power method had to be used. 

The measurement of microwave power was accurate to + 5^. 

In order to compute with sufficient accuracy the same power 

meter was used to measure both and at resonance using 

directional couplers. One can then assume that any measure­

ment errors will be in the same direction so that an overall 

accuracy in should be at least + 2%, Since one can measure 

Q-]_ to at least +1^, it seems reasonable to assume that the 

maximum error in is approximately + Jfo. 

Impedance methods are perhaps the most accurate of all, 

but they require a sufficiently stable source so that SWR or 

phase measurements can be obtained at three or more different 

frequencies in the resonance curve. It turns out that the most 

advantageous quantity to measure in order to obtain an accurate 

determination for these high cavities is extremely sensi­

tive to changes in source frequency. For this reason the mea­

surements needed could not be made with sufficient accuracy or 

repeatability. The method of measurement used is noted in 

Appendix A along with the experimental data. 
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Fig. 17• Experimental spaced-ring cavity with 6/L = 3/4 

Fig. 18. Experimental spaced-ring cavity with ô/L = 1/2 

\ 
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Fig. 19. Experimental spaced-ring cavity with 6/L = 1/4 

Fig. 20. Typical experimental laboratory arrangement 
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SUMMARY AND CONCLUSIONS 

A spaced-ring type of microwave cavity has been considered 

for use as a sampling cavity in systems used to measure the 

properties of gaseous media. Those properties of interest were 

refractive index from which Py ^ can be determined and the 

absorption spectra from which one can determine the concentra­

tion of various polar gas constituents. Also discussed were 

the important measuring instruments using sampling cavities 

and the theory upon which their operation is based. From this 

background, it was shown that the desirable characteristics of 

a cavity used for these purposes include high quality factor 

for good sensitivity, stable resonant frequency versus temper­

ature, low turbulence in flow through measurements, and mini­

mum susceptability to absorped gas and adsorbed water vapor on 

the cavity walls. The characteristics of a spaced-ring type 

cavity for the case where ô/L —0 yields a structure which is 

improved over present cavities in all of the above factors. 

In the analysis of this type of cavity, it has been shown 

that the technique of space-harmonics is quite valid for the 

range of 6/L considered and could be extended to lower ratios 

if m were increased. The ratio of open to closed cavity area 

to one dimensional transverse flow of gas is given by 

A open/A closed = ^ 
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By decreasing the ratio of 6/L the turbulence caused by the 

rings in the flowing gas could be made quite small. This would 

tend to increase the frequency response and accuracy of the 

instrument using the cavity by decreasing the amount of mixing 

and the net wash-out time. 

The approximation J^(k^a) « N^Ck^a) used in the solution 

of the determinal equation was shown to be valid in the cases 

considered for the TE^^^ mode and the TE^^g inode. For lower 

Ô/L values J^(k^a) will become larger. This may cause the 

approximation made in order to solve the determinal equation 

to become somewhat less valid. This effect can be counteracted, 

however, by increasing m without lowering A open/A closed. The 

extension of this technique to larger L values or smaller 

values of m is quite possible. In general, however, as L is 

increased for a given b-a dimension the radiation term will 

continue to increase and may not be negligible. The value of 

Q will be decreased if the radiation loss becomes significant 

compared to the wall losses. Also, this same type of effect 

would be present if b-a were reduced with other dimensions 

held constant. 

Although several terms were neglected in the final 

equation, it turns out that each is quite small for the cases 

considered here compared to the terms retained. This is also 

born out by the close comparison of the theoretical values and 

the experimental data. As the magnitude of the space harmonics 
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outside the cavity approach those inside the cavity, the 

assumption neglecting end effects outside the cavity may not 

be valid. This factor could be removed by extending the end 

plates in the +r direction for some reasonable length beyond 

r = b. 

It has been shown conclusively tnat this type of cavity 

is well suited for the applications considered and that it can 

be adequately described by the method of space harmonics for 

wide ranges in physical configuration. Therefore, it seems 

reasonable to suggest that further work directed toward the 

design of a cavity of this type for an application where it 

can be advantageously employed should be undertaken. 
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APPENDIX A 

The experimental data given in Table 1 was obtained in 

the laboratory using the circuits shown in Figures 22 and 23. 

The values for for the standing wave ratio measurement are 

estimated values based on those obtained in the power measure­

ment method for the same cavity. As previously mentioned the 

SWR method could not be used at the lower frequency because 

the value of was too large and the frequency stability of 

the source was not good enough to allow accurate and repeat-

able measurements of SWR at cavity resonance. 

Table 1. Experimental data for spaced-ring cavities 

p ô/L Yl Pi P2 Af fo Qi Qo 

1 1/4 7.68 7.77 .0125 2.67 9.12 3240 30,500 

1 1/2 6.30 6.36 .0100 3.00 9.198 3070 22,600 

1^ 3/4 7.75 7.78 .0070 4.03 9.304 2310 18,000 

1 3/4 7.55 7.59 .0065 4.49 9.306 2080 17,900 

2 1/4 l6.4 17.5 

0
 
0
 1.43 12.12 1120 20,800 

2 1/2 16.0 17.0 .060 1.23 12.16- 990 17,900 

2 3/4 20.7 21.6 .043 1.64 12.37 753 17,050 

2^ 3/4 19.8 20.6 

0
 
0
 1.58 12.36 780 16,900 

2^ 1/2 22.6 23.7 

0
 
0
 1.65 12.17 735 18,200 

2^ 1/4 24.2 25.6 .060 1.56 12.13 780 20,700 

^Data for cavity with extended end plates. 

^Data Jrom SWR measurements. 
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Fig. 21. Block diagram of equipment used in frequency determination 
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Fig. 22. Block diagram of experimental circuit used for power measurements 
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Fig. 23. Block diagram of experimental circuit used for SWE measurements 
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APPENDIX B 

Using the dimensions of a = 2.2? x 10^ and d = 3.1? x 10^, 

we can compute the resonant frequencies and the unload Q values 

for a cavity without openings (unpertabated). These values 

are given in the table "below for the and TE^^g modes. 

The equations of interest are 

and 

(16?) Q' 
mnp 

[c + (T)T'' (T:: - m') 

'4 + ngna + 2,' 
mn d d d mn 

where = 5 x 10~'^'\/F' for brass and Tj = 377 • For a cavity 

made of brass with the dimensions given above the quantities 

of interest are listed in Table 2. 

Table 2. Computed values for unperturbed brass cavity 

Mode f^ QÔ Toi 

TEoii 9.3 15,600 3.83 

TEq3_2 12.4 16,000 3.83 

In the computations of and f^ for the various cavity 

structures the following equations were used. 
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(170) nNj^(k a) J (k a) ̂  Z — 
njto n 

sin 

PnS 

(171) T^a = + „2) - .V 

(172) -"oil _ 
i — 

f 
Oil 

(k^a)2 4- (£f ) 

(4)' + (T)' 

1/2 

n^en^iu^da^ J?(ko*)) 
A/ 

o o 2 o 
(173) % = 

(Jltk^a) + N^dc^a)) + 

(j2(k^a) + N^(k^a)) 

j2(k^a) (J^dc^a) + N^fk^a)) mô 

+ 4/ujnda^J^(k^a) 

+ ij-TT^Rgp^a (J^(k^a) - J^(kQa) ̂ 2(^0*)) 

(J^(k^a) + N^(k^a)) 

Using Equations 17O and 17I in an iterative fashion we obtain 

a value for k a. Then we can solve for f /f and also 
o ^011 ^011 

for Q . The calculated values obtained are given in Table 3. 
o 
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Table 3» Theoretical data for spaced-ring cavities 

Mode ko* 6/L fr 4% Qo 

^^011 3.69 1/4 9.10 296 30,300 

II  3.76 1/2 9.20 1132 22,900 

II  3.81 3/4 9.30 7650 .17,750 

^̂ 012 3.65 1/4 12.10 154 20,500 

II  3.75 1/2 12.17 780 18,250 

II  3.81 3/4 12.33 6670 17,200 

b-a = 0 radiated power not negligible, 

^b-a ̂  0 radiated power neglected. 
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APPENDIX C 

The question naturally arises about the convergence of 

the summation in Equation 6? for ô/L >0. In order to show 

that this infinite sum does indeed become bounded as n 

+00 or -®, we proceed as follows. 

First let us break the right hand side of Equation 6? 

into two parts so that 

(174) S Ki(Tna) IiCT^a) 
n?o "• 

sin 

M 
L 

becomes 

(175) Z K^(Tna) Ii(T_a) 
n=-l J- xi 

sin 

3^6 

+ nil l̂(V) 

sin 

M 
L 

where 

(176) = (An + Bn - C) 

1 
2 

and 

(177) Pn = go + 
2TTn 
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Since for all cases considered A, B, and C are positive real 

with A > B > C and A > B + C, one can show that for all n^^O 

T^a is positive real if we selected the positive root from 

Equation 176. Also the argument T^a for n < o is always less 

than the argument T^a for n > o. This causes the first summa­

tion in Equation 175 to be term by term greater than the second 

summation. Thus if one can show that 

(178) X %(T a) 1.(7 a) 
n=-l " 

sin 

Pn* 

converges then certainly the summation in Equation 174 

converges. Rewriting Equation 178 we get 

(179) Z K,(T^a) I(t a) 
m=l ^ ™ 

sin 

where m = -n, 

V = (A% - Bm -
1 

C ) 2 , 

Pm = Co -
2nm 

If we define x = 
em* 

then we can write that 

( 1 8 0 )  ( ^ ^ )  
(4^ - Pn ) Ô/L 
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2nni since for all m > o and 

(181) ( sin yi\ ^ 1 
< X • 

Since K^(T^a) ^ 2T~a all m > o we can write 
m 

that the 
2 

V-, 

(182) ^2 K^(T^a) l^(T„a) 
Sin 

< I 
m=l 

2 (Am^ - Bm - C)^ { 2ttiq 
Po) 6/L 

The summation on the right hand side of Equation 182 converges 

2 
since it behaves like l/m for large m. Thus the left hand 

equation is bounded and so the summation of Equation 174 is 

also bounded. 
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