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INTRODUCTION

During the last fifteen years various properties of gas-
eous media have been measured using microwave cavities as the
sampling device. Altheugh extensive work has been done in
this fleld with respect to the design of refractometers and
microwave spectrometers, very little effort has been directed
toward the determination of the variation of sampling cavity
characteristics caused by opening it to the sampled medium.
In this paper, a special type of spaced-ring cavity will be
analyzed and the limits to which it may be opened to the sam~
pled medium examined in detail.

This particular type of microwave cavity was considered
because 1t offers the posslibility of increasing the ratio of
open to closed cavity surface and at the same time reduc;ng
the temperature dependence of its resonant frequency. The
fact that more open surface may be possible without seriously
degrading the desirable characteristics of a cavity 1s most
attractive when one considers the turbulence problem present
when measuring the properties of gaseous medla under flow-
through conditions. For this type of measurement, minimum
turbuience along with rapid response are usually deslired so
that cyclic changes may be accurately recorded. One ef the
most pfomising uses being considered for this type of cavity
is the measurement of the partial pressure of the various po-
lar gases in expired air.

A spaced-ring type of wavegulde structure made up of



insulated concentric rings was first studied by Fox, Miller,
and King of the Bell Telephone Laboratories while working on
a problem in wideband communications via cylindrical wave-
gulde at microwave frequencies. Since low attenuation was

the paramount factor in their study, they chose a cylindrical
waveguide operating in the TEOl mode because thlis mode has the
property of decreasing attenuation with increasing frequency

above cutoff. The attenuation for this mode is given by

R (fc/f)

_ s
01 an‘\/l-(fc/f)z

where RS = surface resistance (ohms),

1 = intrinsic impedance of medium inside the waveguide
(ohms),

f, = cutoff frequency for TE,; wavegulde mode (cps),

f = operating frequency (cps),

and a radius of waveguide (meters).

It was shown in their studies that a 2db per mile loss at a
frequency of 50 KMC for a 2 inch diameter brass pipe using the
TEOl mode 1s possible. However, it was also found that mode
éwitching was present i1f any imperfections existed in the guide
wall. ©Such mode switching causes both phase distortion and
unwanted power losses of‘the desired mode. This problem 1is
particularly acute in elements used to traverse corners, To

reduce signal losses and interference effects due to mode con-

version and reconversion, dissipation was introduced to the



unused modes on a continuous basis. Several ways of doing
this were found. One of these is a spaced-ring type of cir-
cular wavegulde made of concentric isolated metal rings which
provide a boundary which is preferential to the TEOn family of
modes. All modes other than the TEon circular type have wall
currents in the longitudinal directioﬁ and experience consid-
erable loss in the spaced-ring structure as compared to the
loss 1in a solid-walled guide. The power loss for the spaced-
ring structure under proper conditions was observed to be
about 60 per cent more than the theoretical loss for an ideal
copper tube, whereas the observed loss for the unused modes of
propagation was on the order of 1000 to 5,000 times the TEOl
value. The higher-order circul?r waves (i.e. TEgo s TE03 coes)
exist with losses comparable to their values in a solid pipe,
but fortunately the magnitudes of conversion between the TEOl
and other TEon modes have been found to be quite small.
Because of these facts, 1t seemed reasonable to assume
that a spéced-ring structure could be used to advantage as an
open sampling éavity. If the insulated rings can be made pro-
gressively thinner without impalring the desirable character-
istics of the cavity, then it should be possible to achieve
low turbulence to gas flow and better resonant frequency sta-
bility with this type of unit. A TEOlp mode in this, type:of
structure is also optimum with regard to the detrimental ef-
fects caused by the adsorbed water vapor and absorbed gas at

the guide wall. This is true because the E field for this



type of mode 1s zero at the guide wall and the cavity wall
surface area 1s minimized in this application, respectively.
In the sections to follow, the important uses and charac-
teristics of this type of cavity will be examined. In partic-
ular the applications of sampling cavities, measurement tech-
niques, and systems using sampling cavities will be presented
in order to provide a basis for the interpretation of the
results of the analysis to follow. In thls analysis the field
approach will be utilized to develop a so-called condition
equation. The solution of this equation will then allow us to
express in an approximate fashion the fields inside and outside
the cavity in terms of space harmonics, . We can then, in a
straight forward manner, derive equations for cavity quality

factor (QO) and resonant frequency (f.). Using these equations

T
one can then determine the effects of various cavity parameters
on the desirable characteristics of this particular type of

sampling cavity.



5

SAMPLING CAVITY APPLICATIONS

There are several fields of study where quantities of
interest may be obtained by using a microwave sampling cavity
as a measurement device. Among those of interest to the field
of radlio propagation in the microwave region are the refrac-
tive index and the absorption characteristics of the trans-

mission medium.

" Refractive Index
The refractive index of a medium is related to the rela-

tive dlelectric constant by the following equation
(2) n ="\/e,

where n refractive index

and ¢

T relative dielectric constant.

Another quantlty which is sometimes used instead.of the refrac-
tive index is called the refractivity and is defined by the

equation

(3) N = (n-1) 106.

This quantity is used because the‘value'of n forneérly all gas-
eous media only differs fromunity by a very small amount.

The measuremént of refractive index using a sampling
cavity depends upon the fact that the resonant frequency of a
cavity 1s related to the relative dielectric constant of the

medium inside the cavity by the relationship



where ¢ a constant

and f

p = Tresonant frequency {cps).

If we take the derivative of Equation 4 with respect to n one

can show that

(5) ar, = =oln = ~(a107%)aw,
n
2

since  n® =1 for most gaseous media.

This last equation expresses the fact that the change in
resonant frequency is directly proportional to the change in
refractivity. If one measures Af with respect to the resonant
frequency for the case where the cavity medium is a vacuum
then N = AN and one can obtain N directly from the measurement
of the shift in resonant frequency.

One of the many possible applications of the refractivity
measurement in a gaseous media involves the determination of
" the partial pressure of water vapor contained therein. This

can be accomplished by using the empirically determined equation

.6 4810
(6) N=-7—'Z—[P+—T——PHO]

T 2
where N = refractivity,
T = absolute temperature (K°),
P = total pressure (millbars),
and PH o= partial pressure of water vapor (gillibars).



From Equation 6 it is apparent that if the total pressure and

temperature are held constant then

where aq and a, are constants. Thus a microwave hygrometer
can be realized in this manner by measuring Af. If we wish to
measure PH 0 in an absolute manner then Af must, of course, be

2
zero when PH 0 1s zero., An instrument of this type has been
2 Ce
developed by Magee and Crain (10) and reported in the Review

of Scientific Instruments.

Microwave Absorption
It is well known that the molecules of most gases possess
absorption spectra in the microwave region. The bandwidth and
amplitude of these spectral lines are affected by several fac-
tors such as natural line breadth, doppler effect, pressure
broadening, and wall collisions. By far the most 1mp$rtant of
these 1s the pressure broadening effect which can be quantita-

tively expressed by the equation

. 2 , I L
(8) v = e |44 B z ¥ o
ol (ge) (e ()

absorption coefficient (neper/cm),

3

N = number of molecules per cm”,

where vy

fraction of molecules in excited state,

B
Il

¢ = velocity of light (cm/sec),



k = Boltzmann constant (joules/°X),

T

absolute temperature (OK),
[“13!2 = square of dipole moment matrix clement summed
over directions

= frequency (cps),

b

f.= resonant frequency (cps),

and T = mean life time between collisions (sec).

In the reglon near to fr with Af << fr Equation 8 can be

approximated by

- 2 2 i Af
(9) Y T 3ckT _[“L‘ll (£-£ )% + (a0)?]
. r

This i1s the form of a typical resonance absorption of half

bandwidth Af = E%?‘ It can be seen from this equation that

the absorption peak ( ) at the resonant frequency (fr) is

Ymax ‘
proportional to N and inversely proportional to 1/2nT. Now at
low pressures both N and E%? are proportional to pressure, |
therefore, Ymax is independent of pressure over a wilde range
at low pressures. Temperature dependence of Yonax involves Af,
kT, N, and m. For a diatomic or linear molecule Af is very

nearly proportional to L which means that

T '
(10) Ynax &€ ?
and thus
(11) AYmax.; =2AT

Ymax 1



Thus the percentage change in Ymax 1s seen to be equal in mag-
nitude to twice the percentage change in temperature., For a
reasonable temperature change Shis variation in absorption
coefflcient can be quite small. High pressure conditions are
assumed to become lmportant when the number of collisions in-
volving more than two molecules becomes significant. In such
cases the line width 1s no longer proportional to pressure
since the effective number of collislons undergone by one mole-
cule is not simply propbrtional to the density of the molecules.
High pressure may occur as low as 1/2 atmosphere for molecules
with large collision diameters such as NH3' However, low
pressure conditions may still exist at 1 atmosphere for other
gases such as O2 which have very small collision diameters.
Lambert's law states that each layer of material of equal
thickness absorbs an equal fraction of the radiation which tra-
verses 1t. From Lambert's law 1ls derived the exponential

decrease in intensity given by
(12) I=1e ¥

where y 1s the propagation constant or absorption coefficient.
In optical spectra departures from Lambert's law are usually
associated with polychromatic radiation where individual com-
ponents are absorbed at different rates. In the microwave
region, however, Lambert's law may even break down for mono-
chromatic radiation because of saturation effects._ The inten-

sity of radiation can be made so large that absorbling molecules
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of a gas cannot get rid of the absorbed energy rapidly enough
and y becomes dependent on the intensity of the radiation. A
~derivation of y for this case gives

1

8n2n 2nT
o) 2 .2
(13) y = 1“01l £ 2 P 2
3¢kT . (£-£..) +( 1 ) + 8m tIgOII fI( 1
217 3ch 2mT
where h = Planck'é Constant,
n, = number of molecules in lower energy state per cm3,
and % = probability per sec. of a molecular transition in

state,
Thus as a result of saturation at low pressures, y 1s decreas-
ed at all frequencies. The most notable effects occur, of
course, near the peak absorptionatfﬁd&, The line shape is
altered only in that the maximum intensity is decreased by
the factor

1
B |ngy) © £1t (2n7)

(14)
1+

3ch
and the half bandwidth increased by the factor

8n2 Iu01l2 fiteny
(15) 1+ .
3ch

At high pressures, saturation is generally unobservable. Satu-

ration 1s considered to become significant when
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8% |ugy| 2 £1t2mr

|
[

(16)
‘ 3ch
Although broadening of the spectral line does occur because of
molecular collislions with the cavity walls, thls effect plus
the doppler broadening effect are normally much less than the
pressure broadening effect. Ordinarily a non-polar gas does
not absorb microwaves, however lt is possible that during
collisions some dipole moment may exist. Such a pressure de-
pendent absorption has been found for coz.

A somewhat speclalized technique to which microwave spec-
troscopy seems well adapted is the continuous mbnitoring of
various constitutents in a mixture of gases. One could, for
instance, monitor the concentration or partial pressure of O2
in expired air by passing the respiratory gas through the sam-
pling cavity of a microwave spectrometer. Changes in concen-
tration could be very easlily and sensitlvely-detected, since
the spectrometer itself would be under fixed adjustments and
conditions. Furthermore, these changes could be quite rapidly
recorded or controlled by the output of the spectrometer. In
order to eliminate the effects on spectrometer output due to
possible fluctuations in klystron output power, a bridge system
could be used with one arm of the bridge containing the absorp-

tion cell through which gas is being flowed, and the other arm
involving the reference cell, ’A cavity cell type of instrument

1s especlally useful where the intenslty of a particular
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absorption line is to be measured over extended periods of
time.
For a gaseous mlxture of n components, the fractional

abundance of one of the components is given by

n
AT
(17) X € Yy 2 X —1
J:

J
1. P
where Xy = fractional abundance
Ypnax = maXximum absorption due to the ith component

Afij = half width of the absorption line of molecule i
in the presence of an almost pure sample of
molecule J
and P = total pressure
Usually for a mixture of more than two gases, the various
values of line wldth parameters ﬁfll will not be known and thus
one usually assumes that Ymax.is groportional to the fractional
abundance or one compares Ymax of the unknown sample with
values for known mixtures which are simllar to it in composi-

tion.
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REVIEW OF LITERATURE

The two most important topics in the literature that are
of special interest in this study are measurement systems using
sampling cavities and the cavities themselves. The most impor-
tant ltems previously reported in the literature in both of

‘- these areas are reviewed in the next two sections.

Systems Using Sampling Cavities

Microwave refractometers have played an important role in
tropospheric radio propagation research and in the basic stud-
ies of the dielectric properties of gaseous media since their
introduction. One of the first successful recording refracto-
meters was reported by Birnbaum (2) in the Review of Scientific
Instruments in 1950. .This barticular instrument utilizes two
transmission type cavities in a bridge arréngement excited by
a sweep-frequency Klystron. A block diagram of this unit is

shown in Figure 1.
’ Sampling cavity

Sweep Klystron Phase
Generator Oscillatonr meter

Recorder

Reference cavity

Fig. 1. Diagram of a recording, microwave refractometer
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In operation, the Klystron source is caused to sweep in fre-
quency through the resonant point of the cavity and the time
difference between the'peak pg;g; response for‘the two cavities
1s measured. This quantity has been shown to be a measure of
the refractivlity of the sampled medium. The accuracy of this
device is dependent upon its ability to maintain a linear sweep
and is further limited in accuracy and response time by the
phase detector circultry. Another type of refractometer of
interest was reported by Vetter (24) in 1962, This device
virtually eliminates the dependence of the refractometer on
electronic characteristics of the source and detector circultry
and shifts the limitation to the cavities thémselves. A Dblock

diagram of this system is shown in Figure 2.

— Phase |«

Sensitive ‘
Amplifier o
P Sampling Cavity !
Servo
I
|
| = T |
Modulation Klystron : { Diff i
Generator Oscillator T Sum |
|
!
l
{
Tuned Reference Recorder
Phase Cavity :
Sensitive
2 pmplifier [

Fig. 2. Block diagram"of‘a Vetter type refractometer
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The tunable, sealed reference cavity and the sampling
cavity are excited by a single Klystron. The voltages from the
cavity detectors are combined to provide outputs of the sum of
these voltages and their difference. The sum is used to drive
the phase-sensitlive amplifier which causes the Klystron fre-
quency to track the resonant frequency of the cavities. The
difference voltage 1s used to drive the second phase-sensitive
amplifier which controls the servo that tunes the reference
cavity to the resonant frequency of the‘sampling cavity. The
major lmprovement over the type previously mentioned is the
incorporation of the Klystron in a feedback loop and the use
of a servo-tuned reference cavity. The response of this device
is quite slow, but its absolute accuracy is much better than
the type shown in Figure 1. The typical type of sampling cav-
ity used in this instrument 1s similar to that shown in Figure
4,

Microwave cavity spectrometers have played an important
role in the measurement of absorption spectra of various gas-
eous media. This has led to their use in quantitative gas
analysis devices, Typical instruments of this type are shown
in block diagram form in Figure 3.

The operation of these instruments rest on the fact that
microwave absorption can be detected by its effect on the
change in quality factor (Q) of the cavity or by the change
in the magnitude of the peak transmission. These changes are

shown elther by a decrease in the relative amplitude of a wave



16

Sampling
Cavity
Directional
Coupler
/
Sweep .4 Klystron Comparator
Generator | - | Oscillator P Recorder
\
Directional |
Coupler
(a)
Reference .
Sampling Cavity
Cavity
Detector
Sweep Klystron
Generator Oscillator Recorder -— Comparator
Detector

(o)
, Reference Caviuiy
- Fig. 3. Block diagrams for microwave cavity spectrometers

(a) Reflection type

(b) Transmission type

transmitted through the cavity or reflected from the cavity
input into the waveguide or transmission line coupled to it.
If the absorption line is sharper than the cavity response

curve it may be. displayed by sweeping a microwave oscillator
connected to the cavity through the frequency range of the cav- .
ity response curve. The maximum or peak absorption is obtained

from the difference in the absorption dip with and without the
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absorber, This 18 best used with gases at low pressures where

the spectral lines are well separated and narrow in frequency
spread. Very wide lines, as in gases at high pressures, can
be measured by noting the change in the Q of the cavity at
resonance or by simply noting the change in the magnitude of
the maximum reSponsé of the cavity transmlssion chafacteristic.
If only one cavity is used then the absorber must either be
removed physically or removed by a sultable electromagﬁetic

means as in the Stark spectrograph. Most generally two cavi-

tles are used in a bridge type circult so that removal of the
absorber in the sampling cavity 1s not necessary.

Since a sweep frequency mode 1s usually used in these in-
struments, i1t is usually desirable to make the Q as high as
possible for sensitivity reasons, but the cavity bandwidth

mnust be kept greater than the bandwidth of the absorption line
so that the maximum absorption can be readlly observed and

measured.

Microwave Sampling Cavitles

A typlcal sampling cavity of the type presently belng
used in various microwave instruments 1s shown in Figure L,
This unit 1s a transmission type with openings or sampling
holes located in the end walls. The ratio of open to closed
cavity area 1s definitely limited in thls type of unit because
the holes are located in a position that will adversely affect
the normal current flow in the end plates for the TEonp type
of mode. Cavities of this general type are used in both the

Vetter (24) and Birnbaum (2) instruments as well as the vari-

ous microwave spectrometers.
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Fig. 4. A typical microwave sampling cavity
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THEORETICAL ANALYSIS

Analyslis Technlques for Perlodic Structures

There are several different theoretical methods that have
been used in the literature in the analysis of various periodic
microwave structures which appear to have possible application
in this study. One 1s the fleld approach where one applies
Floquet's theorem and Fourler series analysls to arrive at the
electromagnetic flelds of interest in terms of the so-~called
space harmonics. In thls process a condition equation is de-
rived and must be solved in order to obtain Bo for the wave-
guide structure or the resonant frequency (fr) for a cavity
structure. The space harmonics can then be computed and used
in the determination of Qo and other quantities of interest.
This type of approach has been very successfully used in the
"analysis of the helical type structures by Sensiper (20) and
others. However, in their studies they were Interested in
space harmonics which have phase velocities less than the
speed of light so that‘electromagnetic fields of a particular
space harmonic could be made to interact with an electron beam
as in a traveling wave tube., In our study the predominant
space harmonic will have a phase veloclty greater than the
speed of light. It turns out in this case that a somewhat
different condition equation will be obtained than was obtained

for a tape ring structure by Sensiper (20).
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Another possible method for periodic structure analysis
is the so-called filter circuilt, or equivalent cirduit ap-
proach. This analysis technique is hard to apply to the prob-
lem at hgnd because the periodic obstacles musf be represent-
able by a simple shunt element not only individually, but also
when placed in a wavegulde in order to obtain a solution for
the field components with any accuracy. In other words, these
obstacles must be far enough apart so that there is no inter-
action between them. The results of a filter éircuit analysis
usually give Bo’ pass-band frequencies, and interaction imped-
ances for the space harmonics.

Several other methods of analysis were considered includ-
ing the perturbational, variational, and coupled mode types.

It was found, however, that the field approach was superior
for the purposes of this paper. Thus the field approach is
applied in the next section in order to determine the electro-

magnetic fields in a spaced-ring, sampling cavity.

Space Harmonics
A drawing of the particular spaced-ring, cylindrical
cavity to be analyzed is shown in Figure 5. Pictures of the
experimental units are shown in Figures 17, 18 and 19. This
unit consists of five identical sections of length L with
rings of thickness & and open space L-6. The spacers and hold-
ing screws are made of insulative materials which have dilelec-

tric constants close to that of free space., Since the
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///r~ Spacer

7 =~ BRing
= _ _\.-‘ — 4 .
l45 > }-K o L (= )/ 4

LE B ] | Do

. L - L . - Holding
Screw
— End Plate

/

b — Iris

’«%— o —4%~e——~ O —— >
AN

Fig. 5. A spaced-ring, transmission type sampling cavity

determination of the electromagnetic fields within any region
is dependent upon one's ability to solve explicitly Maxwell's
equation in a coordinate system appropriate to the regioqﬁgyd
to the boundary conditions, . several assumptions are needed to
facilitate the analysis using the space harmonic approach.
The validity of these assumptions for this analysis will be
considered later when the experimental results are discussed.

(a) The fields inside and outside the cavity are
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assumed to be the same as for an infinite structure
of the same type where the field is zero at z = 0.
and z = 4 for all r.

(b) All modes except the TEOl'p modes are attenuated to
such an extent that their effect on Qo and fr may be
neglected.

(c) Effects of the source and coupling iris on fields in
.the cavity can be neglected.

(d) Field components of interest are assumed to have no
¢ dependence.

The first assumptlion neglects all end effects and assumes
that the currents in the end walls of the cavity are the image
currents for the flelds of an infinite structure. The fact
that the E'field 1s not forced to zero at the ends outside the
cavity is also neglected.

Because of its general usefulness and application to this
problem Floquet's Theorem will be presented here where this
presentation is after that in Watkins (25). It states that,
"For a glven mode of propagation at a given frequency the
fields in a periodic structure at one cross-section differ
from those one period away only by a complex constant." The
Theorem is true whether the structure contains loss or not so
long as it is periodic. The proof of the theorem lies in the
fact that when the structure having infinite length is displac-

ed along its axis one period, it cannot be distinguished from
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1ts original self. To prove this let us write the field

solution as

ol

(18) E(x,y,z £) = E'(x,y,2) ¢ Y2 ¢JIWE

where E'(x,y,z) e-YZ

ls periodic in z with period L. Let 61 be the field at z =

z
and éé be field at z = 25} Then we can write "
(19) El = E'(x,¥,2,) c~Y2z1 Jwt
and
(20) 52 = E'(x,y,zz) c~YzZ2 Jwt
where z, =2z +1L and E'(x,¥,2,) = E'(x,¥,2, + L).

Thus
(21) fi = E! (X9Yszl) G-Yzl GJWt
and

(22) 52 = E'(x,y,2, + L) Yz + L) _jwt

So

)

(23) Ele-YL

e
™
1l
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In order to use this theorem we expand the field E'(x,y,z)e”'2

into its Fourier series. Thus we let

- 2m
(24)  E'(x,3,2) ¢ %= F E (x,y) ¢ L 2 YR
' all n

and then to find En(x,y) we multiply both sides by

-2
3 ﬂu” z + vz :
€ and integrate both sides from z = zq to

z = 27 + L. The result is given by

z. +L

[

(Y+J2nn)z
(25)  EBp(x,y) =E [ By g, ) e T dz
zZ

o~

This expression can be used to compute the various space
harmonics E (x,y). The nth term of the series in Equation 2
is called the nth space-harmonic. If the propagation con-
stant y = jso then the phase constant for the nth harmonic is

given by
— 21n
(26) Pn ™ B0 * T
and thus the phase velocity for the nth harmonic becomes

(27) v, = w/B,.

In some cases an w-p diagram is of interest. There are a

numnber of ways to determine the w-g dlagram for a specific
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structure. The most common method is to measure the resonant
frequencies of a cavity made up of several sections of the
waveguide. A typical w-B plot for a five element cavity 1s

given below in Figure 6.

Y5
Wy

0 21 L Lom . - .8m m
BL

Fig. 6. w-g diagram for a five element periodic structure

There will be five different resonant frequencies as shown for

the zero order space harmonic. They will obviously occur when

pL= n/5, 2n/5, 3n/5, 4n/5, and n. Such a diagram can be drawn
2mn

for the nth harmonic noting that Bh = Bo ¥ =< and that @ 1is

an even function of 8.

In the analysis of the structure being considered we

seek the proper expressions for the resonant frequency fr and
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unloaded quality factor for the cavity shown in Figure 5 in terms
of the ratio 6/L and other important parameters. In order to
accomplish this the method of space-harmonics will be used.
Neglecting the effects of the source, the homogenous partial

differential equation which must be solved is given by
2 2 =
(28) V“H, + x°H, = 0

where k2 = wzue. This equation 1s derived from Maxwell's
jwt

equation with time dependence ¢ assumed. Let the solution

to Equation 28 in terms of cylindrical coordinates be given by

(29)  H, & Hi(r,p,z) ¢ 17

where y is the propagation constant in the +z direction and Hz
1s periodic of period L. Now expand this solution in terms of
a Fourier Series in order to meet the periodic boundary con-

ditions in z at r = a. Thus

’ 2nn
- - - z
(30) I-Iz = Hé(rsq),z) € TR < : % H’nz(r’cP) € Y2 e jT
where
Z-+L -
1 : 21
(31) Hy, =tf [ [Hé(r,(p,z)e'Yz] V23T 2 daz.
1

If we let vy = J8_. and put the assumed solution back into

o)
Equation 28 we find that each of the n space harmonics must

satisfy the equation
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The general boundary conditlions that must be met in this prob-
lem require that the fields be finite at z = o and approach
Zero as r—eo,

Consldering these two general boundary conditions the
restricted general solutions for H; inside and H; outside the

guide can be written as

2nn
(33) HL = P% 3 Al 1 (rx) ¥ TE
n
and
' 2nmn
(34) Hg = ¢"JIBoZ )3 A?l K, (1,r) e-‘j_E—Z
n

where Io(rrnr) and Ko(rrnr) are zero order modified Bessel func=-
tions of the first and second kind, respectively. Now using

the fact that

(35) E_= Ju |98y how that
P = - T—é— 9;— we can Snow a
n
! .
A 21mn
(36) Eé = = Jwu ¢ IBoZ % ;ﬁ Il('rnr)e:'J L 2

and
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o _ -JB z A° 2mn
(37) Ep = Jwu e o s _T_g K, (T ) e-.j%z
n 'n

also H, 1s non-zero in this case and is given by the equation

-JB, | oH N
(38) H,= —= | == which yields
T ar

A; 2an
(39) H;L‘ = _jpo e—JBOZ %‘, ?1-‘1- Il('rnr) e-JTZ
and
o -JB z Ag _JZnnZ
(40)  HY = 38, ¢ IF% %a Ky (1,T) I

All other field compqnents are zero.

The procedure now is to assume the form of the current
density on the rings at r = a and expand this into a Fourier
series of space-harmonics. Then the boundary conditions are
applied. The boundary conditions which apply to the problem
at hand are as follows:

(a) The tangential ﬁ field must be continuous at r = a
for all ¢ and z.

(b) The discontinuity in the tangential H field at r =
1s equal to the total surface current density.

From (a) we can write that

a
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1 —a) = w° =
(41) Ecp (r=a) = Ecp (r=a)

and from (b) we get that

(42) g (r=a) =W x (H; - H

or

(43) |9, (x=a) = |} - Hp )y,
Note here that we are letting the superscript (i) refer to
field components inside the guide structure and (o) suberscript
refer to field components outside the guilde.

From the above equations it becomes obvious that 1t is
also possible to assume a periodic surface current density Jcp
" at r=a and then to express it in a Fourier series of space-

harmonics., The equations of interest are then gliven by

21n
= = ! = =Yz = =Yz -J_— a
(L) Jp(r=2) Jw(r a) e EZan(a,¢) € e L dz
n

and

21+ S L2mn
(45)  Tpo(aap) = F [ 3y (agez) e™VE TVE T ag

Z

1

where J,  1is the complex Fourler amplitude of the current den-

ne
sity associated with the nth harmonic. In order to use this

approach to solve the problem at hand assume a current density
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function at r=a., Although it would appear that an incorrect
assumption here would be fatal, it turns out that the function-
al form shown in Figure 7.is sufficlently accurate for most
cases. In th;s paper we will assume the surface current

density to have the z - dependence shown in Figure 7.

Jc},(a,cp,z)

Periodic

S
in z

0 5 L L+6

Fig. 7. Assumed current distribution on rings at r=a

Using this function in the integral of Equation 45 we get

Bnd [, Eiii

(46 J = JedTZ (SR L .,
D Ty T Bnb
L B

In order to effect a solution one further condition equation
relating the magnitudes of the space harmonics A% and Ag is
needed. This condition can be stated in three different ways.
One is called the thin_ring case where 6 << L and

(47) Eg(r=a) = E;(r?a) for z = mL + §/2.
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This says that the electric field is constrained to be zero
only at the cénter of the rings. fhis ls accurate only for
very thin rings. The next is referred to as the wide ring or
narrow gap case where L-§ << L. In this case we set

(48)  H)(r=a) = Hy(r=a) at z = (uL - 28,

A more accurate condition equation than elther of the above is

given by

(49) 2na [ (B (r=s) - [5"(x=a)] az = o.
o) @ ®

A more stringent requirement expressed as

(50) (Ew(r=a)) . (J;(r=a)) =0 for all z may also be used.

Condition Equation 49 will be used here. It cén be seen to be
correct since the electric field is zero on the ring surface
and the current density is zero in the gap. Although it would
be desirable to use the boundary condition in Equation 50, it
turns out that Equation 49 is much easier to apply. The jus-
tification for using Equation 49 rests on the fact that it
minimizes the error in matching the electric field for the
assumed current distribution by making the average error equal
to zero.

There are two cases to be considered. First, let us take
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the case where the wall thickness (b-a) is approximately zero.
A finite wall thickness will be considered later. The bound-

ary conditions are then expressible in terms of the equatione

(51) E! = E°

Z z?
(52) H; - H;.= J
and
L *
(53) ~£ (Em)(J¢) dz = 0

[ ]
Using Equations 51 and 52 the condition equations obtained are

By

(54) A T (ra) - A° K (1h8) = L ff;:QZZ
L

and

(55)  hp Ip(ma) + A2 K (1.8) = O

From these two equations we can write that

 Bpt
S11 s
%? Kl(Tna) Bﬁ&L

To(maa) K (158) + K (1) T (rga)

and
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B0
Js Sin g
T I1(Tna)“ Bné
(57) 4% = L '

P Iy (rge) Ky(rpe) + K (1 8) I,(1,8)

Using the condition given in Equation 53 we can write that the

L m oAl
(58) [ =Jwu | 2 T—n- Il('rna) e~IBpZ | -
o n n
-  By®
sin — )
2 gﬂg _—B éz e‘ijz dz = 0.
m ol
- Z

For m # n Equation 58 is equal to zero and thus Equation 58

can be written as the

i
(s0) fL . A, J0 - o) sin Bn® = o
59 -Jwu I.(ra) | T z = 0.
o] n LTn 1 Bné
T

Upon integration of Equation 59 one obtains Equation 60.

: B8
Arll sin -%1—
(60) - I, (7 2) = =0
% T

Now substituting for Ai from Equation 56 we get that the
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B 6_ 2
sin —%—
K (ra) I,(ra) L B
T @& T 8 —
(61) 5 -n 1n L _o.
n Tn\IO(Tna) Kl(Tna) + KO(Tna) Il(Tna?)
Now since Io(Tna)"Kl(Tna) + Ko(Tna) Jl(Tna) = ?ig we can write
Equation 61 in the form
sin Ppd 2
(62) ’%’. K, (1 8) I;(r a) [___L_] = 0.
. . Bna
L.

If one examines this last equation one can show that for Tn2
real all terms are positive real and thus one cannot hope for
this summation to be equal to zero. Since our.structure is not
an infinite one, we can disregard the requirement of no radia-
tion per unit length from the structure which wouLd require an .
infinite source and look to one or more of the space harmonics
to have phase velocities greater than the velocity of light.

Let us consider the n=o space harmonic to have this possibility.

Then we can write Equation 62 in the form

B.& 2
s n
S1 T,

(63) -Il(Toa) K (1 8) = Aéo Il(Tna) Kl(Tna) EEE
L
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2mn
and g, = B, ¥ _%—'

For the n=o harmonic we assume that Bo < k and thus

(o) o

(64) 1 =3k =3/ kK - Bg °

Now using the identities

(65) I;(u) = Jl(-Ju)

and

(66) K (w) = -n/z BZ) (gu)
we get

(67) /2 (N (k@) Jy(ka) + § 35 (k)

= o Il('rna) Kl('rna) _—5_5__ .

Now since the boundary condition on the unperturbed waveguide
for the TEOn modes requires that Jl(koa) = 0, we look for an

approximate solution to Egquation 67 under the assumption that
Jl(koa) << Nl(koa) and that all 7 a for n#o ,are positive real.
These assumptions reduce.the condition équation to that given

in Equation 68.
” B.6_2
sin —-

(68) B0
T

V] b=}

N, (k_a) J) (k a) = AEL I,(r2) K (T a)
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The convergence of the summation in Equation 67 is discussed
in Appendix C. For the large argument form which is suffi-

cilently valid where T2 for n#o is greater than 10 we get

8.5 2
I : N — in —%—
(69) 2 Jl(koa) Nl(koa) = n;é:o(z'rna) Bna—
T

where for n#o
' _ 2mn 2 2 2 2
(70) 7.2 _-\V/(Bo +5)7 a% - kel

and for n=o

(71)  ra = Jka =‘;j\/k2a2 - p2a® .

It is now assumed that the foregoing derivation for an infinite
wavegulde structure is also valid for a cavity made of the same
elements. For the cavity case we require Bo = pn/d where
p=1, 2, 3, ..... because of the end plates. The cavity modes
of interest are the TEOlp types where koa = 3.835 for the
unperturbed cavity for all p. In order to solve for the actual
koa for a periodic structure we use an iterative procedure.
First let k a = 3.835 which is the value for an unperturbed

structure. Then calculate 'Tna using the equation

1 °.
(72) T8 = [ﬁnzmz(%)z (%f + nz) -kgaZ]'E
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where P = number of half wavelengths in cavity length 4,
n = index of summation,
d = length of cavity,
and m = number of identical units of length L in length d.

Next solve for a new koa using Equation 69. Repeat this pro-
cedure until the change in koa over one literation islsuffi-
ciently small. Now take the last vélue of koa from éhis itera=
tive computation and use 1t to solve for the resonant frequency

which 1s given by the expression

(73) g = ﬁa—lﬁ\/(koa)z + (ID2)%

Resonant Frequency Determination
The ratio of the resonant frequency for the spaced-ring

cavity to the resonant frequency of a closed cavity is given

by

t, B+ ()2
(74) 2R (open)

T0lp. (closed) (Tél-)2 £ (TR2)2

In order to determine the validity of this development resonant
frequency measurements were made on a constant length cavity
for various values of 6/L. The cavities used in these experi-

ments are shown in Figure 18, 19, and 20. The non-varying

2

dimensions of interest are length d = 3.17 x 10~ “ meters,

2

radius a = 2.27 x 10 ° meters and wall thickness (b-a) =

2

.9 x 10”° meters. For definition of dimensions see Figure 5.
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9050
9.45
9.40
9.35 )
9.30 G Measured data N
© Theoretical values
9.25
9.20
9.15
X3
9.10 )
9.05 ¢
|
9.00 b
0 .25 .50 <75 1.0

. 8/L
Fig. 8. Cavity resonant frequency f;, versus 8/L
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12.50
12.45
12.40
12.35
12.30 O Measured data
Q® Theoretical values
12.25
12.20 {
| is]
12,15
12.10
- 12.05 } - T I
12.00
O 025 - 050 075 1.0
' 8/L

Fig. 9. Cavity resonant frequency f012 versus §/L
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Quality Factor Determination
Next we look to the computation of the Q, of the spaced-
ring cavity. This can be accomplished by evaluation of the

expression for unloaded quality factor given by the equation

(75) Q. = Wpax

o
Prp
where Umax = maximum energy stored per cjcle (Joules)
w = angular frequency (rad/sec)
and Pp = total average power loss (watts),

In order to compute Uma

x We will break the problem into two

distinct regions. One inside the cavity and the other outside

the cavity. The expressions for these energy terms are given

below.
i _ 1 i2
(76) Uy =5 [1 € Ecp dv
o _ 1 o 2
(77) Umax =3 Jo € Ecp dv

In order to evaluate these two integrals we will use the fields

given by

2A°
(78) B} = Jun 3 Tz K, (1,T) sin Bz
and

i
2Ay
1_

(79) Ecp = =Juwu % T I,(tyr) sin g z. .
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Ignoring end effects the maximum energy stored outside the
cavity is given by '

d

(80) U; = %‘f .f elgglz 2nrdrdz n#o
a

and inside the cavity by

. d a
(81) U;ax = % S /'elE;IZ 2nrdrdz
o

All terms in the last two equations which result from the

double summation resulting from Eé 2 or E; 2

and where n#m
result in zero when integrated from zero to 4 on z. Thus we

can write the integrals of Equation 81 in the following form

: 2 2 a l‘%lz 2 2 |
(82) Urtax = Uneu®w %é’ ‘é‘ 5 Il(vrnr) sin® (8,2) rdrdz
Tn
where for the n=o term we get
(83) Uiax (n=0) = 4n€u w l-—l—- (k T) sinz(soz)<rdrdz

Since To = jko.
For Umax we do not consider the n=o term since it represents
radiated power and therefore is a loss term component. The

energy stored (max) outside the guide is given by

Iﬂnl2

n

(84) Umax = Yq euzw2 2 j' Kl(T r) sin? (B2 ) rdrdz

nfo o a
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The total energy stored is then given by

i

(85) U __ = Urinax(n;éo) + UL

max (n=o0) + U;ax(n#o)

Now using Equations 56 and 57 Equation 85 reduces to

2

I%Ornr) sin

i
d.a
(86) U = 4mep?u® S j;j; [An| (8 ,z) rdrdz

112

d alA
+[J I ZI Jf(kor) sin? (B z) rdrdz

oo k-

R
2

+ K in® (B d

n#o‘é‘é Ti 1(Tp2) sin® (B z) rdrdz

Evaluating each integral we get the following eqﬁation

1,2
A
(87) Umax = neuzwzdaZlkgl (J%(koa) - Jo(koa) Jz(koa))
c .
112
lAnI "2 1 2
) n§0 lel Il (Tna) ) (l ! (T 2) Il(Tna)
na)
|A$1|2 '2 1 2
+ K - —_—
n§0 2 (1 (Tpa) = (1 + (Tna)z) Kl("'na)]

Now since
IZ(T a)
(88) |A°l2=lAiI2 lon
n n Kz( a)
1'™n
from the boundary conditions,we can reduce the two summatlons

above to a single summation 'so that
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1 .
A
(89) Upey . = ne“?deaZ [ I_;_l_ {J%(koa) - Jo(koa) Jz(koa))
o .
+ 2, ]Anl (Ii('rna) KZ’LZ(Tna) - Klz.('rna) Iiz("'na)
. n#o Ti Ki(fna)
Now since
(90)  1y(2) K{(2) - Ii(2) Ky(2) = - Z,
(91)  12(rya) K (rga) - E(rga) 11P(r0)
= - ;i; I,(r,8) K] (ry8) + K (r,8) I{(rqe)
and
K,{(7,8)
(92)  K{(rpa) = =2 - K,(rpa),

n
the term

(93)  i(rge) KiZ(rp8) - Ko(rpa) I4%(rpe) =

TA8)

n

Thus we can write the maximum energy function as

i
(9%) Upex = neuzwzdaz [[ kl (Jl(k ) - Jo(k,a) Jo(kga)) *

(o]

K (
- 'r_lE (Il('rna) (—}T;:L— - Kplrga)) + K (18 ).

|
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(Eléigfl + Is(7,8)) o+ n%% A?%
1
(Tna)z (Tna(Il(Tna) Ky(tpa) - Io(rpa) Ki(T,a))- ZIl(Tna)Kl(Tna?]
K (rp8)

Using the large argument form for In(Tna) Kn(Tng) given by

1
(95) In(Tna) Kn(Tna) —— z?za

Ta-—vm

for n#o Equation 94 can be written as

~ 12
al
(96) U % meululaa I(i v (5 (kg2) = T, (kga) Tp(ky2))
- o}
2
i
) Ay J
Ago (Tna)é Kl(Tna)

For n#o we can use the equation

. 2
2 2222 i Pn®
11% _ J§%a“t 2 Sin =7
(97) ]Anl = - n Kl(Tna) [——Bné J
' L T

and for n=o
2.2 2.2 2

2 J 6 a"km
1 _ 0 2 2
S A e CCR AR A
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Putting Equations 97 and 98 into Equation 96 we get

2 2. H.2.2
(99) U, =T wqig T | (B ) - 3, (kya) Tp(kya))
| 3 oy b2
. (42 b (1 il
(5 (kga) + N (k) - R "fna) By 8

L

It turns out for the cases considered that the summation in

Equation 99 1is negligible compared to the first term so that

(100) U > 3 eu2y2an 22 [(Ji(koa) - T, (kg8) T, (k,a)

max
41,2

y (J%(koa) + N%(koa))] | ;

This last equation will be utilized in the determination of Qo
for the cavity. Note here that the term neglected above
represents the energy stored outside the cavity, and.may have
to be included if it is not sufficiently small.

The power loss due to radlation 1s only present in the n=o
terﬁ outside the guide. The power density in the +r direction

is given by

_1 O O
(101) Pr =3 Re [Eocp Hﬁz]

and thus the total average power radlated is given by

4 -
(102) P = P 2nrdz
Lrad é' r r

-0
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or
d
o} o
10 P = Re nE H* rdz.
ot Lrad ‘£ Op 0z
T ®
Since
24°
(104) ng = jwu Kl(Tor) sin gz
and
o _ o
(105) HJ, = 2Ag K (T,T) sin g2z

where To = jkd’ we can write - -

ZING
(106) B, = w2 (-n/2 B{?) (k7)) sin g,z
o

and -

(107) ng = 2Ag (-3 n/2 Héz)(kor)) sin B,z.

Now using Equation 103 we get

2
3 o
(108) P, = R musag]” o)k 7y 5802) (i)
Lrad - r—fm - ko 0. T ° ° °

——

. sinz(soz)rdz.

Now as r approaches =

(109) ) (er) — 3 [R5 oI

o
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and
' (2? / j2 Jk
- r

( 110) HO (kor) . nkor e'7o",
then

2 2.2.2 '
(111) p, = e w“dg J8 Ji(koa).

rad L1,

The avérage power loss in the walls of the gulde can be

computed using the equation

m-1 ql+§

(112) P =
Lrall

o=

N 2 .
L RS IHZl (r=a) 2na dz.
Q=0 q

Using the fact that

(113) lHi

ilz ElbrAélz Jg(kéa) sin? BoZ

and neglecting the other space harmonics the integral Equatioh

112 can be written in the form

(114) = Z"BaBRSJ%Zkg (P(k a) + No(k.a))
114) P x a a)) .
Lyall B2 [ 17 1%
o (FPrga) + (dBgp) + Ng(koa))(Ji(koa){]F(m,E)
where

m=l 4 | 2np(q+§) 2mpq
(115) F(m,7) = mé - 23, 5== | sin———=" - sin——|.
. g=o0

L 2pm m
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It turns out that for a symmetrical unit the summation in

Equation 115 is always zero so

(116) F(m,2) = ms
and thus
33, 2,22
(117) P = = 9 [(J (k. a) + N¥(k.a)) (J:(k.a))
Liall 41,2 1'% 1'% *Yo'to

+ (k) + Ng(koa)z(Jf(koa)ﬂ mé

In the computation of the end losses as with the wall
losses we will consider only the n=o space harmonic component.

On this basis then

2 452
(118) Hi (z=0) = ;59 'Ail J%(kor)
: o
and
(119) P =‘2'fa 2 R [Hilz(z=o).2nrdr
Lends o] Z 7slr

This can be written as

2
8"RSB§IAi' 2
(120) P = - rJ5 (k. r) dr
L 2 1'%o
ends k (o]
o)

where

i 2 J262a2k§ﬂ2 2 2
(121) [AOI =0 (Jl(koa) + Nl(koau



L9

and thus

8 R 2725242 2 :
L = 8 O [2’2- (Ji(koa) - Jo(koa) Jz(koa))

(122) P >
ends 41,

) (Ji(koa) + Ni(koa)ﬂ.

The equation for end losses in the cavity 1is thus given by

: UHBRsangbza4 2
(123) By == [(Ji(koa) - I (ka) J,(k.a))

. (Ji(koa) + Ni(kéa))].v

The total unloaded quallty factor (Qo) expression‘can now be

written as

(12) ay = weptulaat (dE(kga) - I (kea) T,(kga)) -

(75 (xp2) + N2 (1 0)

2r?adB k2 ((92(x, 8)) (32 (k a) + N2(k a))+

gJi(koa))(Jg(koa),+ Ngkkoa))) mé

+ UnzwudazJi(koa)

2
1

+ 4roB e’ (35(kya) - T (k,8) J,(ka)) *

(3B(ke) + N2(k a))
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To check this equation we let 8— L which means that Jl(koa)—»

0 and mé ~~d. Equation 124 reduces to

23

d
(125) Q = W 02—
2R_ [kod + ZBOeJ

which can be written in the form

2 3.3
(126) Qo = el w a .

2R [koa v (82) (B2 )2]

Now since the resonant angular velocity for a ‘I'EOlp mode 1is
glven by
2
(k a) (232)

(127) w

T d\/ue

and since 1 =( e we get

3/2
2]

(128)  Q, = 2 24, ,pTia, 2 .
2R [(koa) + () (B ]

[,2)? + (212)2

This lést equation is the same as for an unperturbed cavity
which means that our derived approximate expression for Q is
correct for the limiting case where spaced ring structure
approaches a closed cavity condition.

The calculated points for the theoretical curves obtained
using Equation 124 are plotted in Figures 10 and 11 for p=1

and p=2, respectively. The measured data are shown in Figures
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12 and 13 along with theoretical curves assuming the radiation
loss to be negligible. It can be seen here that good correla-
tion results between the theoretical and measured data points
for the p=l case and also for the p=2 case when radiation loss
1s neglected. Also included 1s a measured data point for a
cavity where the end plates are extended beyond the outside
edge of the cavity. The difference between these two condi-
tions does not appear to be very great and thus the neglecting
of end effects is partially validated. The theoretical justi-
fication for neglecting the radiated power loss in the case of
the measured data rests on the fact that the experimental
cavity has non-zero wall thicknéss whereas the derivation was
on the basis that (b-a)=0. In the non-zero wall thickness case,
one can approximate the fields outside the guide by consider-
ing the slots between washers to constitute a radial trans-
mission line of length b-a and thickness L-8. The only modes
considered are the TEOn type for a radial line and thus the
propagation constant for all of these is imaginary as long as
L-% <k/é- Therefore we have m radial lines excited by the
fields inside the guide and operating below cutoff. The mode
undergoing the least attenuation in the +r direction is the

TEOl where the eigenvalue for this case is given by

(129) k2= k° -(%)

Now since the electric fields inside the radial guides must
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match the fields at r=a and r=b inside and outside guide,
respectively, magnitudes at r=a and r=b must be related to
each other by the attenuation of the radial guide. Thus
E°(r=b) K, (k. b)
1'7r = ~Jku(b-a)

(130) —_—— =
E (r=a) Kl(kra)

and if one uses the value of b-a = .9 x 10-2 meters and lets
L-6=>L then the ratio of field magnitudes inside and outside
at f = 10 KMC is given by e-4‘08 which means that the radiated
power is down by at least 50 times. This suggests that the
radiation may be neglected in cases where I-§ << )\/2 and b-a
is sufficiently large. The measurement methods are discussed
in the next section and the test data are given in Appendix A.
Appendix B gives some fundamental relationships for the unper-
turbed cavities and the computed values of Qo and £, for the
various cavities. Because the cavity rings would have to be
made extremely thin in the r direction before the experimental
data would start to approach the theoretical curves given in

Figures 10 and 11, no attempt was made to take experimental

data to support these curves.
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MEASUREMENT TECHNIQUES

Basically there are two general circult configurations
used in a cavity type, microwave refractometer or spectro-
meter. These two dlfferent methods are shown in block diagram
form in Figure 14. Although the external microwave circuits
differ considerably in the two cases, there is little essential

difference in the operation of the cavity.

Reflectibn Method
First let us consider the reflection type of circuit

shown in Figure 1llda coupled to the waveguide by a single hole

or iris.
Detector
“? kP~
. P+
Signal Directional .
Generator |- Coupler G cavity
b=
— (a)
+ +
Py P3
—_— . —p
Signal —— Cavity Detector
Generator ‘%-
1
(b)

Fig. 14. BResonant cavity measurement circuits
(a) Reflection method

(b) Transmission method
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An appropriate equivalent circuit for the cavity and its cou-
rling iris for the reflection method with reference to the bb!

plane is shown in Figure 15.

|
i
Z b Ll

Ok

By + 3 (oL - &)

A g
&
T
'

|
I
|
l
l
|
I
|
o
|

Fig. 15. Equivalent circuit of reflection cavity at plane bb'

In this case the losses in the coupling iris are neglected and
M is the mutual inductance between the line and cavity and the
cavity is represented by a series RS,L,C circuit., At plane
bb' the impedance looking into the cavity is glven by

(wi)?

R, + j(wL_ j%)

(131) Z

bb! — J@L;

1

2
thus if we define By = é@%l— we can write
s“o '

(132) Zpb! _ P !
4 - Z W 2
° ° 1+ g F )
. W
s
h 2 - 2 For high Q_ cases = W
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so that Equation 132 can be written in the form

Zppr X By

1
(133) = o= + /5%
ZO Zo 1+ 2Q06
wW=w., .
where § = r and Q_ = QE.
W o Ry

The cavity quality factor from Figure 15 can be written as

WL - BR, X, /Z_
(%) @ = —x1%9)

1
where B = B (l e )2) .
1" "o

ne

Now since in most cases (Xl/Z°)<<1.then B

Q Q
~ - 0

Bl and we can write

-

Thus we can write that

(136) & =5 + 5 " where B, = 77— .-
U % % 1Yy

Now referring be, to a position aa' nearer the source where

the reactance fl is removed then the impedance at the new
Zo
location is given by

B1Zo
(137) Zaa' = 1 + J on(a_bo)
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where §_ = 51 {
(o}
Qo

NIHN
—_—

(o]

w=wy,

and 6 =
Wy

X
But since in general Zl <<l and Qg¢>sl

o

then we can write

! ~ Bl

(138) aa_ = .
Z, 1 +J2Q)5

Using Equation 138, one can show that the reflection coefficient

near resonance is given by

aa'!
(139) vl !
o Zaa' .1 Bl + 1 + ] 2Q06
Z
o
_ 1 -1 '
Now if we define Qxl = dl and Qo E; where d1 and do are called

loss factors, then Bl = dl/do and Equation 139 can be written

in the form

2(d1/do)

(140) 1, =3

or
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24

1
(141) r©_ =
o] dl + do + J 28

Assuming now that a lossy material is introduced into the

"
cavity then the new value for do is given by do + %T where the
new permittivity is given by e¢'-je". Thus the reflection

coefficlent equation_can now be written as

2dl 24

1
(142) r! = — =
o e . T & FTa_ Fen T J2as
a +a + 5+ 3208 1 7% T e o
where &' = w-wé, el = 1,
[}
Wp
- (&2y 1
and “’I"_(e )E‘”o‘

At resonance with and without a lossy medium, the reflection

factors are real and are given by

2d,
(143) 1! T ———
ores d1 + do
and
" 2d1
(144) 1 = v , respectively.
Ores d1 + do + €r

For e; <<d; + dj we can now compute the change in reflected

voltage from Equation 145.
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) _ 2d1 G;,

o o’res ~ 2
(d1 + do)

0
=)

L ol

(145) [3—‘5

res

The maximum change in reflected voltagelﬂﬁgx for a variable d

1

is given when dl = do so that

V-

maxp '

(146) l - 2Q, €
or

= = +1 "
(147)  avo = (2 | V7]) et

The minimum detectable absorption is given by setting

AVI;ax equal to the thermal noise (vo%tage) given by
i
_ 2
(148)  vVy(rms) =  (4xINAFZ )“.

Transmission Metﬁod

In the transmission method we are interested in the ratio
AV
3

\
Jires
introduced into the sampling cavity. In this case we will

when a lossy medium of dielectric constant e¢'-je" is

develop an expression for the ratio of the power transmitted
through the cavity at frequencles near the resonant frequency

to the transmitted power at resonance. From thls expression

)

T . For this case we
3lres

consider the coupling holes to be representable by ideal trans-

we can develop an equation for

formers and thus neglect both the losses and the reactance of
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Fig. 16. Equivalent circuit of a transmission cavity

the coupling network. ~An equivalent circult for this case 1is
shown in Figure 16. The power transmitted to the load in
Figure 16 is given by

2 2
(h9) 7, =% ny [B[]* 2,

2
: 1 , _
B (1+a+8,) + St 5| ] -
and the power transmitted at resonance is then given by

- 2 | 2
(150) P A [” 2,

3 res 2 2. 2
RS (1+B+6,)
n% Zo ng ZO
s s

The ratio of the power transmitted at frequencles near reson-

ance to the transmitted power at resonance can now be expressed

by

-
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P
(151) =2 T —i .
3 res 1+4Q16

Since for this case

1
(152) Q, T Ee———
1 d1+d2+d°
- 1 -
where sz = EZ and d3 dl+d2+do

the corresponding voltage ratio is given by

» 1
(153) ]V3 - i
V3 res d§+462

Now if we introduce a lossy medium Equation 153 can be written

in the form

'
v d,te!
(ash) g2 - =
| 5 res (a5+4s ) 2
and since §' = § in most cases, Equation 154 can be expressed
as
V' d +€"
(155) vi = .__;L_E;T
3 resl  (q2446%) 2

3

at frequencies close to resonance,

At resonance where 6 = 0 we can now write



AV " et
(156)‘ __2 g = = L
V3res d3 do + d1 + d2
or
K d.e”
sty |av,| % St
d3 —

2

for variables d, and d, is when d
maximum change in AV3 as

The maximum change in the transmitted voltage at resonance
1

1 = do + 4

o This glves the
K€"
- | |- or
(158) AV3 nax = Konler a

The minimum detectable change in the présence of thermal noise
can be computed in the same manner as before.
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EXPERIMENTAL, METHODS

The two quantitlies of interest in this paper are the reso-
nant frequency and unloaded quality factor of the cavity being
conslidered. In what follows we will discuss first the measure-
ment of frequency and then the measurement of quality factor
for the cavity structures shown in Figures 17, 18, and 19, A

typical experimental laboratory set up is shown in Figure 20.

Measurement of Resonant Frequency

There are several methods that can be used in the deter-
mination of frequencies in the microwave region. Two of the
most important methods are considered here, One of these
methods 1s to measure =ssenticlly the wavelength using an
absorption type cavity wavemeter which is calibrated in terms
of frequency and uses a micrometer dial to measure end plate
motion., The most common type of cavity used in a cavity wave-
meter 1s a cylindrical type operating in the TEyqq mode with
an adjustable end plate. The accuracy of this type of measure-
ment is dependent upon temperature, humidity and scale calibra-
tion. In most cases the accuracy is within + .1%.

The other method usgd in this research pfoject is shown
in Figure 21. It consists basically of a harmonlc generator
or transfer oscillator and a standard oscillator‘plus electron-
ic counter. The transfer oscillator frequency is adjusted

until a zero beat of nf- and £, is obtained (i.e. f2=0). Then

1
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the standard oscillator frequency is adjusted until it is
within 10 MC of f,. The unknown frequency fy can then be

calculated using the equation
(159) f_ = n(f

If £, is greater than f,s the minus sign is used, but if f, is
greater than fo the plus sign is used. In order to determine
the number of the harmonic n one can adjust the transfer oscil-

lator to the next lower zero beat frequency so that (n+1)f1 =

1
fl' Now n can be computed using the expression

!
£1/£,

(160) n = —="L
1l - fl/fl

Another way to determine the harmonic number n is to measure

fy with a cavity wavemeter and then determine n from

(161) n = fx/fl.

The accuracy of this method for measuring frequency in the
microwave region is about an order of magnitude better than

the measurement using a cavity wavemeter.

Measurement of Quality Factor
The various methods that may be used to determine the
unloaded quality factor of a cavlity are listed below:
(a) Transmission method

(b) Transient or decrement method
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(c) Impedance method

(d) Dynamic methods
If we consider a transmission cavity arrangement as shown in
Figure 1lb the value of Q measured using methods a, b, and d is
the loaded Q namely Ql of Equation 152. For method (a) the
value of Ql ls determined by measuring the resonant frequency |

and the frequencies at the half power transmission points and

then using
(162) Q) = £,/bf.

In the decrement method a pulse of RF at the resonant frequency
is applied to the cavity and the decay time of the oscillation
after the pulse 1s removed 1s measured. The value of Qy can

then be computed by solving the equation
(163) Q; = mf At

where At = time for oscillation to decay to 1/¢ of its original
value. This method is usually used for cavities with Q;'s
higher than 104 since At is hard to measure accurately below
this value of Q. For this reason this method was not employed
in the cavity measurements presented in Appendix A. Method (d4)
uses a swept frequency Klystron source which is caused to sweep
in frequency through the resonance curve of the cavity. At the
same time this sweep frequency is mixed down to a much lower

frequency range by mixing 1t with a fixed frequency Klystron
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source. An adjustable Q circult at the lower frequency range
is adjusted until the response curve for the two swept cavi-
ties match. If the transmission detectors are matched then Qi

can be computed using the equation
6 ) 1 '
(164) Q= Q(£,./,)

where the primed quantities refer to the low frequency circuit
quantities. Since the low frequency loaded quality factor Qi
can be determined much more accurately than the quality factor
Ql at the high frequency, it is péssible to find Ql very
accurately using Equation 164, In order to compute Q, from
any of the Ql values determined by the methods just mentioned
one must be able to measure 31 and 32. ‘There are two ways that
can be used to determine By and Bo with sufficient accuracy.
One method 1is to measure PI, Pi, and P§ at resonance using the
circuit shown in Figure 14b and then compute By and B, using
the following equations
byy

2

M il

— l_
+
Py

(165) P3/PY

+,+ _ Bp
(166) PB/PZ I—:—Ez

and
(167) B, = (1 + 82) Yy

Another way is to measure the SWR at resonance<an& note that
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SWR(res) = yq if y; > 1, otherwise SWR = %I. Now if B, << 1
as 1t is in this case then we can determine B, approximately
by equating it to Y1+ Thls method does not of course yield
B, and for this reason the SWR method is used normally with a
reflection type cavlity. For the measurements at p = 2 (lower
Ql) the frequency stabllity of the source was sufficient so
that good agreement in the determination of Y, Was obtained by
either method. However, at p = 1 (higher Ql) this was not so
aq? phe power method had to be ﬁsed.

The measurement of microwave power was accurate to + 5%.
In order to compute Bl with sufficient accuracy the same power
meter was used to measure both PI and Pi at resonance using
directional couplers. One can then assume that any measure-
ment errors will be in the same direction so that an overall
accuracy in Bl should be at least + 2%. Since one can measure
Ql to at least + 1%, it seems reasonable to assume that the
maximum error in Q, is approximately + 3%.

Impedance methods are perhaps the most accurate of all,

but they require a sufficiently stable source so that SWR or

phase measurements can be obtalned at three or more different

frequencies in the resonance curve. It turns out that the most
advantageous quantity to measure in order to obtaln an accurate
Q determination for these high Q; cavitles is extremely sensi-
tive to changes in source frequency. For this reason the mea-
surements needed could not be made with sufficient accuracy or

repeatability. The method of measurement used is noted in
Appendix A along with the experimental data.



Fig. 17. Experimental spaced-ring cavity with &8/L = 3/4

Fig. 18. Experimental spaced-ring cavity with &/L = 1/2
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Flg. 19. Experimental spaced-ring cavity with §/L = 1/4

Fig. 20. Typical experimental laboratory arrangement
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SUMMARY AND CONCLUSIONS

A spaced-ring type of microwave cavity has been considered
for use as a sampling cavity in systems used to measure the
properties of gaseous medla. Those properties of interest were
refractive index from which PHZO can be determined and the
absorption spectra from which one can determine the concentra-
tion of various polar gas constituents. Also discussed were
the important measuring instruments using sampling cavities
and the theory upon which their operation is based. From this
background, it was shown that the desirable characteristics of
a caﬁity used for these purposes include high quality factor
for good sensitlvity, stable resonant frequency versus temper-
ature, low turbulence in flow through measurements, and mini-
mum susceptability to absorped gas and adsorbed water vapor on
the cavity walls. The characteristics of a spaced-ring type
cavity for the case where §/L—0 yields a structure which is
improved over present cavities in all of the above factors.

In the analysis of this type of cavity, it has been shown
that the technique of space-harmonics is quite valid for the
range of 8/L coﬁsidered and could be extended to lower ratios
if m were increased. The ratio of open to closed cavity area
to one dimensional transverse flow of gas 1s given by

1 L

_ - &
A open/A closed = ST
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By decreasing the ratio of 8/L the turbulence caused by the
rings in the flowing gas could be made quite small. This would
tend to increase the frequency response and accuracy of the
instrument using the cavity by decreasing the amount of mixing
and the net wash-out time.

The approximation J (koa) << Nl(koa) used in the solution

1
of the determinal equation was shown to be valid in the cases
considered for the TEO11 mode and the TEO12 mode. For lower
8/L values J;(k,a) will become larger. This may cause the
approximation made in order to solve the determinal equation
to become somewhat less valid. This effect can be counteracted,
however, by increasing m without lowering A open/A closed. The
extension of this technique to larger L values or smaller
values of m is quite possible. In general, however, as L is
‘increased for a given b-a dimension the radiation term will
continue to increase and may not be negligible. The value of
Qo will be decreased 1f the radiation loss becomes significant
compared to the wall losses. Also, this same type of effect
would be present if b-a were reduced with other dimensions
held constant.

Although several terms were neglected in the final Qo
equation, it turns out that each is quite small for the cases
considered here compared to the terms retained. This is also

born out by the close comparison of the theoretical values and

the'experimental data. As the magnitude of the space harmonics
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outside the cavity approach those inside the cavity, the
assumption neglecting end effects outside the cavity may not
be valid. Thls factor could be removed by extending the end
plates in the +r direction for some reasonable 1engfh beyond
r = Db.

It has been shown conclusively tnat this type of cavity
is well suited for the applications considered and that it can
be adequately described by the method of space harmonics for
wide ranges in physical configuration. Therefore, it seems
reasonable to suggest that further work directed toward the
design of a cavity of this type for an application where it

can be advantageously employed should be undertaken.
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APPENDIX A

The experimental data given in Table 1 was obtained in
the laboratory using the circuits shown in Figures 22 and 23.
The values for 32 for the standing wave ratio measurement are
estimated values based on those obtained in the power measufe-
ment method for the é;ﬁe.cavity.‘ As previously mentioned the
SWR method could not be used at the lower frequency because
the value of Ql was too large and the frequency stability of

the source was not good enough to allow accurate and repeat-

able measurements of SWR at cavity resonance.

Table 1. Experimental data for spaced-ring cavities

p &/L Y1 By By AT £, Q Q

1 1/4 7.68 7.77 .0125 2.67 9.12 3240 30,500
1 1/2 6.30  6.36 .0100 3.00  9.198 3070 22,600
1% 3/4  7.75 7.78 .0070 4.03 9.304 2310 18,000
1 3/ 7.55  7.59 .0065 4.49  9.306 2080 17,900
2 1/b 16.4  17.5 .070  1.43 12.12 1120 20,800
2 1/2 16.0  17.0 .060  1.23 12.16 990 17,900
2 3/4 20.7  21.6 .043  1.64 12.37 753 17,050
2® 3/L 19.8  20.6 .040  1.58 12.36 780 16,900
2P 1/2 22.6  23.7 .050  1.65 12.17 735 18,200
2 1/h 24,2 25.6  .060  1.56 12.13 780 20,700

8Data for cavity with extended end plates.

bData .rom SWR measurements.
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APPENDIX B

Using the dimensions of a = 2.27 x 102 end d = 3.17 x 102,

we can compute the resonant frequencies and the unload Q values
for a cavity without openings (unpertabated). These values
are given in the table below for the TEO11 and TE012 modes.

- The equations of interest are

1 '2 a
(168) ! = —— T + bna
Tonp 2nd\/ue-\\// np d

2

and
] 2 3/2 '2 2
' {T 2 4 (252 ] (7.2 = m®)
(169) Qr - mn d mn42
mnp '4 . npna 2a(pmay (' 2
2Rs [Tmn + =3 + TT(R%—) Umn - ﬂ

where HS =5x 10'7\f;— for brass and 7) = 377 . For a cavity
made of brass with the dimensions given above the quantities

of interest are listed in Table 2.

Table 2. Computed values for unperturbed brass cavity

' '

Mode T, Q Toq
TEg1q 9.3 15,600 . 3.83
TEoq o 12.4 16,000 3.83

In the computations of QO and fr for the various cavity

structures the followlng equations were used.
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2
sig Pnd
1 in =z

(170) "Nl(ko?) I (ka) = ng% 2 | P

2

(171) T8 ='\\/4n2m2(%}2(%$ + nz) - kia2

£ ( 2] 1/2
(172) _Toil _ J (koa)2 + (Bgé)
' >
£ ; 2
7011 L(TOI)2 v (REE)
/
Pepfdda’  (FP(x ) - T (ka) I,(k8))
(173) @, =

~2n3a3Rsk§ Ji(koa) (Ji(koa) + Nf(koa)) +

2

(J7

(k,a) + N2 (k)

Ji(kog) (Ji(koa) + Ng(koa)) mé

+ bnfupda®sZ (k _a)

+ 4R gl (32 (k a) - I (kea) Jpkga)) *

2

(37

: 2
(k a) + Nj(k2))
Using Equations 170 and 171 in an iterative fashion we obtain
a value for koa. Then we can solve for f /f' and also

To11 To1l
for Qo' The calculated values obtalned are given in Table 3.



85

Table 3. Theoretical data for spaced-ring cavities

Mode k.2 - &/L f. Q Qﬁ

TEp1q 3.69 1/4 9.10 296 30,300
" 3.76 1/2 9.20 1132 22,900
" 3.81 3/4 9.30 7650 17,750

TE(1 5 3.65 1/4 12.10 154 20,500
" 3.75 1/2 12.17 - 780 18,250
" | 3.81 3/4 12.33 6670 17,200

3
b-a = 0 radiated power not negligible.

bpeg # 0 radiated power neglected.
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APPENDIX C

The question naturally arises about the convergence of
the summation in Equation 67 for §/L > 0. In order to show
that this infinite sum does indeed become bounded as n
+o or -o, we proceed as follows.

| First let us break the right hand side of Equation 67

into two parts so that

. Bpd
sin ——
(174) ngo Ky (1y2) I(r @) T
1
becomes
B b2
-0 sin T
(175) ngal Kq(tpa) Ip(ry8) 5.5
1
2
™) sin EEE
L
+ nzi K, (1,8) I(1pa) -_EZE—_
B
where
3
(176) Tpd = (An2 + Bn - C)
and
(177) g, = o + 472,
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Since for all cases considered A, B, and C'are positive real
with A> B > C and A > B + C, one can show that for all n#0
T2 1s positive real if we selected the positive root from

Equation 176. Also the argument T.a for n < o is always less

n
than the argument Tn@ for n > o. This causes the first summa-~
tion in Equation 175 to be term by term greater than the second

summation. Thus if one can show that

Bpd-?
- sin T
(178) nzal Kq(1,2) Il(Tna) —_EZE_—
B

converges then certainly the summation in Equation 174

converges. Rewriting Equation 178 we get

. Bpb2
© sin -
(179) m§1 Ky (mg2) I(r a) mB_Tn_g_
L

where m = -n,
2 1
& = (Ag = Bm - C)Z,

2
and 8y = Bo - _EE .

B._6
If we define x = —%}-then we can write that

2
(180) (& X)" < L
(5F2 - By ) 6/L
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since B, < g%g for all m > o and

2
sin x 1

Since Kl(Tma) Il(Tma) < Ej;_ for all m > o we can write

Tma
that the
2
B, &
(182) 3, ) il
182 X, (t_a) Ii(7.a)
n=1 1''m 1''m Bmé
T
o
< 2
m=1 1

T
2 (an® - Bu - C)Z (2B _ 5 ) /L

The summation on the right hand side of Equation 182 converges
since it behaves like l/m2 for large m. Thus the left hand
equation is bounded and so the summation of Equation 174 is

also bounded.
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